These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 29758157)

  • 1. Nanocellulose Fragmentation Mechanisms and Inversion of Chirality from the Single Particle to the Cholesteric Phase.
    Nyström G; Arcari M; Adamcik J; Usov I; Mezzenga R
    ACS Nano; 2018 Jun; 12(6):5141-5148. PubMed ID: 29758157
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Confinement-induced liquid crystalline transitions in amyloid fibril cholesteric tactoids.
    Nyström G; Arcari M; Mezzenga R
    Nat Nanotechnol; 2018 Apr; 13(4):330-336. PubMed ID: 29556006
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Understanding nanocellulose chirality and structure-properties relationship at the single fibril level.
    Usov I; Nyström G; Adamcik J; Handschin S; Schütz C; Fall A; Bergström L; Mezzenga R
    Nat Commun; 2015 Jun; 6():7564. PubMed ID: 26108282
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dispersing swimming microalgae in self-assembled nanocellulose suspension: Unveiling living colloid dynamics in cholesteric liquid crystals.
    Chu G; Sohrabi F; Timonen JVI; Rojas OJ
    J Colloid Interface Sci; 2022 Sep; 622():978-985. PubMed ID: 35569411
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanostructural Properties and Twist Periodicity of Cellulose Nanofibrils with Variable Charge Density.
    Arcari M; Zuccarella E; Axelrod R; Adamcik J; Sánchez-Ferrer A; Mezzenga R; Nyström G
    Biomacromolecules; 2019 Mar; 20(3):1288-1296. PubMed ID: 30673281
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An insight into nanocellulose as soft condensed matter: Challenge and future prospective toward environmental sustainability.
    Tan K; Heo S; Foo M; Chew IM; Yoo C
    Sci Total Environ; 2019 Feb; 650(Pt 1):1309-1326. PubMed ID: 30308818
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cholesterics of colloidal helices: predicting the macroscopic pitch from the particle shape and thermodynamic state.
    Dussi S; Belli S; van Roij R; Dijkstra M
    J Chem Phys; 2015 Feb; 142(7):074905. PubMed ID: 25702029
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Light-Directed Dynamic Chirality Inversion in Functional Self-Organized Helical Superstructures.
    Bisoyi HK; Li Q
    Angew Chem Int Ed Engl; 2016 Feb; 55(9):2994-3010. PubMed ID: 26764018
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amyloid fibril-nanocellulose interactions and self-assembly.
    Kummer N; Giacomin CE; Fischer P; Campioni S; Nyström G
    J Colloid Interface Sci; 2023 Jul; 641():338-347. PubMed ID: 36934581
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional Materials from Nanocellulose: Utilizing Structure-Property Relationships in Bottom-Up Fabrication.
    De France K; Zeng Z; Wu T; Nyström G
    Adv Mater; 2021 Jul; 33(28):e2000657. PubMed ID: 32267033
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correlation length and chirality of the fluctuations in the isotropic phase of nematic and cholesteric liquid crystals.
    Krich JJ; Romanowsky MB; Collings PJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 May; 71(5 Pt 1):051712. PubMed ID: 16089556
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controlled Assembly of Nanocellulose-Stabilized Emulsions with Periodic Liquid Crystal-in-Liquid Crystal Organization.
    Chu G; Vasilyev G; Vilensky R; Boaz M; Zhang R; Martin P; Dahan N; Deng S; Zussman E
    Langmuir; 2018 Nov; 34(44):13263-13273. PubMed ID: 30350695
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Colloidal cholesteric liquid crystal in spherical confinement.
    Li Y; Jun-Yan Suen J; Prince E; Larin EM; Klinkova A; Thérien-Aubin H; Zhu S; Yang B; Helmy AS; Lavrentovich OD; Kumacheva E
    Nat Commun; 2016 Aug; 7():12520. PubMed ID: 27561545
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Periodic assembly of nanoparticle arrays in disclinations of cholesteric liquid crystals.
    Li Y; Prince E; Cho S; Salari A; Mosaddeghian Golestani Y; Lavrentovich OD; Kumacheva E
    Proc Natl Acad Sci U S A; 2017 Feb; 114(9):2137-2142. PubMed ID: 28193865
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation of cellulose nanomaterials via cellulose oxalates.
    Henschen J; Li D; Ek M
    Carbohydr Polym; 2019 Jun; 213():208-216. PubMed ID: 30879662
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-assembly of colloidal particles in deformation landscapes of electrically driven layer undulations in cholesteric liquid crystals.
    Varney MC; Zhang Q; Senyuk B; Smalyukh II
    Phys Rev E; 2016 Oct; 94(4-1):042709. PubMed ID: 27841645
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural Arrest and Phase Transition in Glassy Nanocellulose Colloids.
    Chu G; Vasilyev G; Qu D; Deng S; Bai L; Rojas OJ; Zussman E
    Langmuir; 2020 Feb; 36(4):979-985. PubMed ID: 31927969
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magnetically responsive gourd-shaped colloidal particles in cholesteric liquid crystals.
    Senyuk B; Varney MC; Lopez JA; Wang S; Wu N; Smalyukh II
    Soft Matter; 2014 Aug; 10(32):6014-23. PubMed ID: 24994521
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Elastic constants of biological filamentous colloids: estimation and implications on nematic and cholesteric tactoid morphologies.
    Bagnani M; Azzari P; De Michele C; Arcari M; Mezzenga R
    Soft Matter; 2021 Mar; 17(8):2158-2169. PubMed ID: 33443281
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Liquid-liquid crystalline phase separation in biological filamentous colloids: nucleation, growth and order-order transitions of cholesteric tactoids.
    Azzari P; Bagnani M; Mezzenga R
    Soft Matter; 2021 Jul; 17(27):6627-6636. PubMed ID: 34143859
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.