These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
207 related articles for article (PubMed ID: 29758298)
1. Transcriptome sequencing for identification of diapause-associated genes in fall webworm, Hyphantria cunea Drury. Deng Y; Li F; Rieske LK; Sun LL; Sun SH Gene; 2018 Aug; 668():229-236. PubMed ID: 29758298 [TBL] [Abstract][Full Text] [Related]
2. Physiology of diapause and cold hardiness in the overwintering pupae of the fall webworm Hyphantria cunea (Lepidoptera: Arctiidae) in Japan. Li Y; Goto M; Ito S; Sato Y; Sasaki K; Goto N J Insect Physiol; 2001 Sep; 47(10):1181-1187. PubMed ID: 12770196 [TBL] [Abstract][Full Text] [Related]
3. De novo transcriptome sequencing and analysis of Coccinella septempunctata L. in non-diapause, diapause and diapause-terminated states to identify diapause-associated genes. Qi X; Zhang L; Han Y; Ren X; Huang J; Chen H BMC Genomics; 2015 Dec; 16():1086. PubMed ID: 26689283 [TBL] [Abstract][Full Text] [Related]
4. Effects of Autumn Warming on Energy Consumption of Diapausing Fall Webworm (Lepidoptera: Arctiidae) Pupae. Zhao L; Wang W J Insect Sci; 2021 Mar; 21(2):. PubMed ID: 33822125 [TBL] [Abstract][Full Text] [Related]
5. Geographic variation in critical photoperiod for diapause induction and its temperature dependence in Hyphantria cunea Drury (Lepidoptera: Arctiidae). Gomi T Oecologia; 1997 Jul; 111(2):160-165. PubMed ID: 28307989 [TBL] [Abstract][Full Text] [Related]
6. Diapause induction, color change, and cold tolerance physiology of the diapausing larvae of the Chouioia cunea (Hymenoptera: Eulophidae). Zhao L; Xu X; Xu Z; Liu Y; Sun S J Insect Sci; 2014; 14():. PubMed ID: 25527599 [TBL] [Abstract][Full Text] [Related]
7. Diapause induction and termination in Hyphantria cunea (Drury) (Lepidoptera: Arctiinae). Chen C; Wei X; Xiao H; He H; Xia Q; Xue F PLoS One; 2014; 9(5):e98145. PubMed ID: 24878546 [TBL] [Abstract][Full Text] [Related]
8. Transcriptome analysis and response of three important detoxifying enzymes to Serratia marcescens Bizio (SM1) in Hyphantria cunea (Drury) (Lepidoptera: Noctuidae). Feng K; Luo J; Ding X; Tang F Pestic Biochem Physiol; 2021 Oct; 178():104922. PubMed ID: 34446198 [TBL] [Abstract][Full Text] [Related]
9. Survey of the native insect natural enemies of Hyphantria cunea (Drury) (Lepidoptera: Arctiidae) in China. Yang ZQ; Wang XY; Wei JR; Qu HR; Qiao XR Bull Entomol Res; 2008 Jun; 98(3):293-302. PubMed ID: 18312714 [TBL] [Abstract][Full Text] [Related]
10. Physiological Mechanisms of Variable Nutrient Accumulation Patterns Between Diapausing and Non-Diapausing Fall Webworm (Lepidoptera: Arctiidae) Pupae. Zhao L; Wang W; Qiu Y; Torson AS Environ Entomol; 2021 Oct; 50(5):1158-1165. PubMed ID: 34363460 [TBL] [Abstract][Full Text] [Related]
11. High-throughput profiling of diapause regulated genes from Trichogramma dendrolimi (Hymenoptera: Trichogrammatidae). Zhang X; Du W; Zhang J; Zou Z; Ruan C BMC Genomics; 2020 Dec; 21(1):864. PubMed ID: 33276726 [TBL] [Abstract][Full Text] [Related]
12. Comparative Transcriptomic Analysis Reveals Molecular Profiles of Central Nervous System in Maternal Diapause Induction of Jarwar AR; Hao K; Bitume EV; Ullah H; Cui D; Nong X; Wang G; Tu X; Zhang Z G3 (Bethesda); 2019 Oct; 9(10):3287-3296. PubMed ID: 31405890 [TBL] [Abstract][Full Text] [Related]
13. Transcriptomic analysis of interactions between Hyphantria cunea larvae and nucleopolyhedrovirus. Sun L; Liu P; Sun S; Yan S; Cao C Pest Manag Sci; 2019 Apr; 75(4):1024-1033. PubMed ID: 30230189 [TBL] [Abstract][Full Text] [Related]
14. Full-Length Transcriptome Survey and Expression Analysis of Parasitoid Wasp Chouioia cunea upon Exposure to 1-Dodecene. Pan L; Guo M; Jin X; Sun Z; Jiang H; Han J; Wang Y; Yan C; Li M Sci Rep; 2019 Dec; 9(1):18167. PubMed ID: 31796851 [TBL] [Abstract][Full Text] [Related]
16. Transcriptome sequencing reveals potential mechanisms of diapause preparation in bivoltine silkworm Bombyx mori (Lepidoptera: Bombycidae). Chen YR; Jiang T; Zhu J; Xie YC; Tan ZC; Chen YH; Tang SM; Hao BF; Wang SP; Huang JS; Shen XJ Comp Biochem Physiol Part D Genomics Proteomics; 2017 Dec; 24():68-78. PubMed ID: 28850878 [TBL] [Abstract][Full Text] [Related]
17. Bacteria-mediated RNAi for managing fall webworm, Hyphantria cunea: screening target genes and analyzing lethal effect. Zhang X; Fan Z; Zhang R; Kong X; Liu F; Fang J; Zhang S; Zhang Z Pest Manag Sci; 2023 Apr; 79(4):1566-1577. PubMed ID: 36527705 [TBL] [Abstract][Full Text] [Related]
18. Genome of the webworm Hyphantria cunea unveils genetic adaptations supporting its rapid invasion and spread. Chen Q; Zhao H; Wen M; Li J; Zhou H; Wang J; Zhou Y; Liu Y; Du L; Kang H; Zhang J; Cao R; Xu X; Zhou JJ; Ren B; Wang Y BMC Genomics; 2020 Mar; 21(1):242. PubMed ID: 32183717 [TBL] [Abstract][Full Text] [Related]
19. Transcriptome analysis in the beet webworm, Spoladea recurvalis (Lepidoptera: Crambidae). Chang JC; Ramasamy S Insect Sci; 2018 Feb; 25(1):33-44. PubMed ID: 27433928 [TBL] [Abstract][Full Text] [Related]
20. Plasticity of nutrient accumulation patterns in diapausing fall webworm pupae. Zhao L; Wang W; Qiu Y; Torson AS Bull Entomol Res; 2021 Mar; ():1-8. PubMed ID: 33785080 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]