These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 29758609)

  • 1. Experiments and characterization of low-frequency oscillations in a granular column.
    Oyarte Gálvez L; Rivas N; van der Meer D
    Phys Rev E; 2018 Apr; 97(4-1):042901. PubMed ID: 29758609
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phase-coexisting patterns, horizontal segregation, and controlled convection in vertically vibrated binary granular mixtures.
    Ansari IH; Rivas N; Alam M
    Phys Rev E; 2018 Jan; 97(1-1):012911. PubMed ID: 29448482
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low-frequency oscillations and convective phenomena in a density-inverted vibrofluidized granular system.
    Windows-Yule CR; Rivas N; Parker DJ; Thornton AR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):062205. PubMed ID: 25615083
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pattern transition, microstructure, and dynamics in a two-dimensional vibrofluidized granular bed.
    Ansari IH; Alam M
    Phys Rev E; 2016 May; 93(5):052901. PubMed ID: 27300965
    [TBL] [Abstract][Full Text] [Related]  

  • 5. From the granular Leidenfrost state to buoyancy-driven convection.
    Rivas N; Thornton AR; Luding S; van der Meer D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Apr; 91(4):042202. PubMed ID: 25974479
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional simulations of a vertically vibrated granular bed including interstitial air.
    Idler V; Sánchez I; Paredes R; Gutiérrez G; Reyes LI; Botet R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 May; 79(5 Pt 1):051301. PubMed ID: 19518443
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Granular Leidenfrost effect in vibrated beds with bumpy surfaces.
    Lim EW
    Eur Phys J E Soft Matter; 2010 Aug; 32(4):365-75. PubMed ID: 20820844
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of defects in the onset of wall-induced granular convection.
    Fortini A; Huang K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):032206. PubMed ID: 25871102
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Faraday tilting of water-immersed granular beds.
    Milburn RJ; Naylor MA; Smith AJ; Leaper MC; Good K; Swift MR; King PJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jan; 71(1 Pt 1):011308. PubMed ID: 15697596
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Convection and fluidization in oscillatory granular flows: The role of acoustic streaming.
    Valverde JM
    Eur Phys J E Soft Matter; 2015 Jun; 38(6):66. PubMed ID: 26123774
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluidization of a vertically vibrated two-dimensional hard sphere packing: a granular meltdown.
    Götzendorfer A; Tai CH; Kruelle CA; Rehberg I; Hsiau SS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jul; 74(1 Pt 1):011304. PubMed ID: 16907086
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of thermal convection on density segregation in a vibrated binary granular system.
    Windows-Yule CR; Weinhart T; Parker DJ; Thornton AR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):022202. PubMed ID: 25353462
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scaling behavior in the convection-driven Brazil nut effect.
    Hejmady P; Bandyopadhyay R; Sabhapandit S; Dhar A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 1):050301. PubMed ID: 23214729
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Convection in vibrated annular granular beds.
    Wildman RD; Martin TW; Krouskop PE; Talbot J; Huntley JM; Parker DJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jun; 71(6 Pt 1):061301. PubMed ID: 16089729
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Granular core phenomenon induced by convection in a vertically vibrated cylindrical container.
    Sun J; Liu C; Wu P; Xie ZA; Hu K; Wang L
    Phys Rev E; 2016 Sep; 94(3-1):032906. PubMed ID: 27739818
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental study of solid-liquid-type transitions in vibrated granular layers and the relation with surface waves.
    Mujica N; Melo F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jan; 63(1 Pt 1):011303. PubMed ID: 11304252
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal convection and temperature inhomogeneity in a vibrofluidized granular bed: the influence of sidewall dissipation.
    Windows-Yule CR; Rivas N; Parker DJ
    Phys Rev Lett; 2013 Jul; 111(3):038001. PubMed ID: 23909362
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Granular Leidenfrost effect: experiment and theory of floating particle clusters.
    Eshuis P; van der Weele K; van der Meer D; Lohse D
    Phys Rev Lett; 2005 Dec; 95(25):258001. PubMed ID: 16384510
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transitions in the horizontal transport of vertically vibrated granular layers.
    Farkas Z; Tegzes P; Vukics A; Vicsek T
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Dec; 60(6 Pt B):7022-31. PubMed ID: 11970641
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Instabilities in vertically vibrated fluid-grain systems.
    King PJ; Lopez-Alcaraz P; Pacheco-Martinez HA; Clement CP; Smith AJ; Swift MR
    Eur Phys J E Soft Matter; 2007 Mar; 22(3):219-26. PubMed ID: 17225933
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.