These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 29758622)

  • 1. Direct determination of forces between charged nanogels through coarse-grained simulations.
    Quesada-Pérez M; Maroto-Centeno JA; Martín-Molina A; Moncho-Jordá A
    Phys Rev E; 2018 Apr; 97(4-1):042608. PubMed ID: 29758622
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Competition between excluded-volume and electrostatic interactions for nanogel swelling: effects of the counterion valence and nanogel charge.
    Adroher-Benítez I; Martín-Molina A; Ahualli S; Quesada-Pérez M; Odriozola G; Moncho-Jordá A
    Phys Chem Chem Phys; 2017 Mar; 19(9):6838-6848. PubMed ID: 28218325
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temperature-sensitive nanogels in the presence of salt: explicit coarse-grained simulations.
    Quesada-Pérez M; Ahualli S; Martín-Molina A
    J Chem Phys; 2014 Sep; 141(12):124903. PubMed ID: 25273470
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coarse-grained Monte Carlo simulations of nanogel-polyelectrolyte complexes: electrostatic effects.
    Pérez-Mas L; Martín-Molina A; Quesada-Pérez M
    Soft Matter; 2020 Mar; 16(12):3022-3028. PubMed ID: 32129421
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coarse-grained simulations of diffusion controlled release of drugs from neutral nanogels: Effect of excluded volume interactions.
    Maroto-Centeno JA; Quesada-Pérez M
    J Chem Phys; 2020 Jan; 152(2):024107. PubMed ID: 31941292
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coarse-Grained Simulations of Release of Drugs Housed in Flexible Nanogels: New Insights into Kinetic Parameters.
    Quesada-Pérez M; Pérez-Mas L; Carrizo-Tejero D; Maroto-Centeno JA; Ramos-Tejada MDM; Martín-Molina A
    Polymers (Basel); 2022 Nov; 14(21):. PubMed ID: 36365754
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The stimuli-responsive multiphase behavior of core-shell nanogels with opposite charges and their potential application in in situ gelling system.
    Yu T; Geng S; Li H; Wan J; Peng X; Liu W; Zhao Y; Yang X; Xu H
    Colloids Surf B Biointerfaces; 2015 Dec; 136():99-104. PubMed ID: 26364090
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energetic and entropic forces governing the attraction between polyelectrolyte-grafted colloids.
    Arya G
    J Phys Chem B; 2009 Dec; 113(48):15760-70. PubMed ID: 19842639
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combined depletion and electrostatic forces in polymer-induced membrane adhesion: a theoretical model.
    Raudino A; Pannuzzo M; Karttunen M
    J Chem Phys; 2012 Feb; 136(5):055101. PubMed ID: 22320763
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly viscous antibody solutions are a consequence of network formation caused by domain-domain electrostatic complementarities: insights from coarse-grained simulations.
    Buck PM; Chaudhri A; Kumar S; Singh SK
    Mol Pharm; 2015 Jan; 12(1):127-39. PubMed ID: 25383990
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Many-body interactions and coarse-grained simulations of structure of nanoparticle-polymer melt mixtures.
    Khounlavong L; Pryamitsyn V; Ganesan V
    J Chem Phys; 2010 Oct; 133(14):144904. PubMed ID: 20950038
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Poisson-Boltzmann model of electrolytes containing uniformly charged spherical nanoparticles.
    Bohinc K; Volpe Bossa G; Gavryushov S; May S
    J Chem Phys; 2016 Dec; 145(23):234901. PubMed ID: 27984866
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coarse-grained simulations of polyelectrolyte complexes: MARTINI models for poly(styrene sulfonate) and poly(diallyldimethylammonium).
    Vögele M; Holm C; Smiatek J
    J Chem Phys; 2015 Dec; 143(24):243151. PubMed ID: 26723636
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of surface charges on the solvation forces in confined colloidal solutions.
    Grandner S; Zeng Y; v Klitzing R; Klapp SH
    J Chem Phys; 2009 Oct; 131(15):154702. PubMed ID: 20568875
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New coarse-graining procedure for the dynamics of charged spherical nanoparticles in solution.
    Dahirel V; Jardat M; Dufrêche JF; Turq P
    J Chem Phys; 2007 Mar; 126(11):114108. PubMed ID: 17381197
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A New Coarse-Grained Force Field for Membrane-Peptide Simulations.
    Wu Z; Cui Q; Yethiraj A
    J Chem Theory Comput; 2011 Nov; 7(11):3793-802. PubMed ID: 26598270
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiscale coarse-grained simulations of ionic liquids: comparison of three approaches to derive effective potentials.
    Wang YL; Lyubartsev A; Lu ZY; Laaksonen A
    Phys Chem Chem Phys; 2013 May; 15(20):7701-12. PubMed ID: 23595102
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermodynamics of charged nanoparticle adsorption on charge-neutral membranes: a simulation study.
    Li Y; Gu N
    J Phys Chem B; 2010 Mar; 114(8):2749-54. PubMed ID: 20146444
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of the Electrostatic Interactions in the Stabilization of Ionic Liquid Crystals: Insights from Coarse-Grained MD Simulations of an Imidazolium Model.
    Saielli G; Wang Y
    J Phys Chem B; 2016 Sep; 120(34):9152-60. PubMed ID: 27486996
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction between charged nanoparticles and vesicles: coarse-grained molecular dynamics simulations.
    Liu L; Zhang J; Zhao X; Mao Z; Liu N; Zhang Y; Liu QH
    Phys Chem Chem Phys; 2016 Nov; 18(46):31946-31957. PubMed ID: 27844088
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.