BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 29758634)

  • 1. Reduced-order model for inertial locomotion of a slender swimmer.
    Mahalinkam R; Gong F; Khair AS
    Phys Rev E; 2018 Apr; 97(4-1):043102. PubMed ID: 29758634
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Locomotion by tangential deformation in a polymeric fluid.
    Zhu L; Do-Quang M; Lauga E; Brandt L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jan; 83(1 Pt 1):011901. PubMed ID: 21405707
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Swimming with a cage: low-Reynolds-number locomotion inside a droplet.
    Reigh SY; Zhu L; Gallaire F; Lauga E
    Soft Matter; 2017 May; 13(17):3161-3173. PubMed ID: 28397936
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Symmetric Mixtures of Pusher and Puller Microswimmers Behave as Noninteracting Suspensions.
    Bárdfalvy D; Anjum S; Nardini C; Morozov A; Stenhammar J
    Phys Rev Lett; 2020 Jul; 125(1):018003. PubMed ID: 32678625
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical investigation of the hydrodynamics of anguilliform swimming in the transitional and inertial flow regimes.
    Borazjani I; Sotiropoulos F
    J Exp Biol; 2009 Feb; 212(Pt 4):576-92. PubMed ID: 19181905
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of shape and stroke parameters on the propulsion performance of an axisymmetric swimmer.
    Peng J; Alben S
    Bioinspir Biomim; 2012 Mar; 7(1):016012. PubMed ID: 22345408
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low-Reynolds-number swimmer utilizing surface traveling waves: analytical and experimental study.
    Setter E; Bucher I; Haber S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 2):066304. PubMed ID: 23005203
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reciprocal locomotion of dense swimmers in Stokes flow.
    Gonzalez-Rodriguez D; Lauga E
    J Phys Condens Matter; 2009 May; 21(20):204103. PubMed ID: 21825512
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrodynamic interaction of swimming organisms in an inertial regime.
    Li G; Ostace A; Ardekani AM
    Phys Rev E; 2016 Nov; 94(5-1):053104. PubMed ID: 27967048
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Realization of a push-me-pull-you swimmer at low Reynolds numbers.
    Silverberg O; Demir E; Mishler G; Hosoume B; Trivedi N; Tisch C; Plascencia D; Pak OS; Araci IE
    Bioinspir Biomim; 2020 Sep; 15(6):. PubMed ID: 32620000
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flagellar swimmers oscillate between pusher- and puller-type swimming.
    Klindt GS; Friedrich BM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):063019. PubMed ID: 26764816
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrodynamic oscillations and variable swimming speed in squirmers close to repulsive walls.
    Lintuvuori JS; Brown AT; Stratford K; Marenduzzo D
    Soft Matter; 2016 Sep; 12(38):7959-7968. PubMed ID: 27714374
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical investigation of the hydrodynamics of carangiform swimming in the transitional and inertial flow regimes.
    Borazjani I; Sotiropoulos F
    J Exp Biol; 2008 May; 211(Pt 10):1541-58. PubMed ID: 18456881
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pulsed jet dynamics of squid hatchlings at intermediate Reynolds numbers.
    Bartol IK; Krueger PS; Stewart WJ; Thompson JT
    J Exp Biol; 2009 May; 212(Pt 10):1506-18. PubMed ID: 19411544
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct numerical simulations of a microswimmer in a viscoelastic fluid.
    Kobayashi T; Jung G; Matsuoka Y; Nakayama Y; Molina JJ; Yamamoto R
    Soft Matter; 2023 Sep; 19(37):7109-7121. PubMed ID: 37694444
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stability of a Dumbbell Micro-Swimmer.
    Ishikawa T
    Micromachines (Basel); 2019 Jan; 10(1):. PubMed ID: 30621046
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alignment and propulsion of squirmer pusher-puller dumbbells.
    Clopés J; Gompper G; Winkler RG
    J Chem Phys; 2022 May; 156(19):194901. PubMed ID: 35597650
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of wall shear stress around a competitive swimmer using 3D Navier-Stokes equations in CFD.
    Popa CV; Zaidi H; Arfaoui A; Polidori G; Taiar R; Fohanno S
    Acta Bioeng Biomech; 2011; 13(1):3-11. PubMed ID: 21500758
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of solid boundaries on swimming dynamics of microorganisms in a viscoelastic fluid.
    Li GJ; Karimi A; Ardekani AM
    Rheol Acta; 2014 Dec; 53(12):911-926. PubMed ID: 26855446
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Motion of microswimmers in cylindrical microchannels.
    Overberg FA; Gompper G; Fedosov DA
    Soft Matter; 2024 Mar; 20(13):3007-3020. PubMed ID: 38495021
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.