These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 29758691)
1. Self-avoiding walk on a square lattice with correlated vacancies. Cheraghalizadeh J; Najafi MN; Mohammadzadeh H; Saber A Phys Rev E; 2018 Apr; 97(4-1):042128. PubMed ID: 29758691 [TBL] [Abstract][Full Text] [Related]
2. Mapping of the Bak, Tang, and Wiesenfeld sandpile model on a two-dimensional Ising-correlated percolation lattice to the two-dimensional self-avoiding random walk. Cheraghalizadeh J; Najafi MN; Dashti-Naserabadi H; Mohammadzadeh H Phys Rev E; 2017 Nov; 96(5-1):052127. PubMed ID: 29347657 [TBL] [Abstract][Full Text] [Related]
3. Loop-erased random walk on a percolation cluster is compatible with Schramm-Loewner evolution. Daryaei E Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022129. PubMed ID: 25215710 [TBL] [Abstract][Full Text] [Related]
4. Fokker-Planck equation of Schramm-Loewner evolution. Najafi MN Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022113. PubMed ID: 26382350 [TBL] [Abstract][Full Text] [Related]
5. Monte Carlo tests of stochastic Loewner evolution predictions for the 2D self-avoiding walk. Kennedy T Phys Rev Lett; 2002 Apr; 88(13):130601. PubMed ID: 11955086 [TBL] [Abstract][Full Text] [Related]
6. Avalanche frontiers in the dissipative Abelian sandpile model and off-critical Schramm-Loewner evolution. Najafi MN; Moghimi-Araghi S; Rouhani S Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 1):051104. PubMed ID: 23004700 [TBL] [Abstract][Full Text] [Related]
7. Geometrical clusters in two-dimensional random-field Ising models. Környei L; Iglói F Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jan; 75(1 Pt 1):011131. PubMed ID: 17358134 [TBL] [Abstract][Full Text] [Related]
8. Theta-point polymers in the plane and Schramm-Loewner evolution. Gherardi M Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):032128. PubMed ID: 24125234 [TBL] [Abstract][Full Text] [Related]
9. Winding angles of long lattice walks. Hammer Y; Kantor Y J Chem Phys; 2016 Jul; 145(1):014906. PubMed ID: 27394124 [TBL] [Abstract][Full Text] [Related]
10. Percolation in a distorted square lattice. Mitra S; Saha D; Sensharma A Phys Rev E; 2019 Jan; 99(1-1):012117. PubMed ID: 30780325 [TBL] [Abstract][Full Text] [Related]
11. Quantum critical behavior of the quantum Ising model on fractal lattices. Yi H Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):012118. PubMed ID: 25679581 [TBL] [Abstract][Full Text] [Related]
12. Left passage probability of Schramm-Loewner Evolution. Najafi MN Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):062105. PubMed ID: 23848625 [TBL] [Abstract][Full Text] [Related]
13. Three-dimensional randomly dilute Ising model: Monte Carlo results. Calabrese P; Martín-Mayor V; Pelissetto A; Vicari E Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Sep; 68(3 Pt 2):036136. PubMed ID: 14524861 [TBL] [Abstract][Full Text] [Related]
14. Percolation between vacancies in the two-dimensional Blume-Capel model. Deng Y; Guo W; Blöte HW Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jul; 72(1 Pt 2):016101. PubMed ID: 16090030 [TBL] [Abstract][Full Text] [Related]
15. Critical properties of short-range Ising spin glasses on a Wheatstone-bridge hierarchical lattice. Almeida ST; Nobre FD Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022102. PubMed ID: 26382339 [TBL] [Abstract][Full Text] [Related]
16. Nonequilibrium relaxations within the ground-state manifold in the antiferromagnetic Ising model on a triangular lattice. Kim E; Lee SJ; Kim B Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Feb; 75(2 Pt 1):021106. PubMed ID: 17358312 [TBL] [Abstract][Full Text] [Related]
17. Statistical investigation of the cross sections of wave clusters in the three-dimensional Bak-Tang-Wiesenfeld model. Dashti-Naserabadi H; Najafi MN Phys Rev E Stat Nonlin Soft Matter Phys; 2015 May; 91(5):052145. PubMed ID: 26066157 [TBL] [Abstract][Full Text] [Related]
18. Nematic phase in the J(1)-J(2) square-lattice Ising model in an external field. Guerrero AI; Stariolo DA; Almarza NG Phys Rev E Stat Nonlin Soft Matter Phys; 2015 May; 91(5):052123. PubMed ID: 26066135 [TBL] [Abstract][Full Text] [Related]
19. Fractal dimension of critical curves in the O(n)-symmetric ϕ^{4} model and crossover exponent at 6-loop order: Loop-erased random walks, self-avoiding walks, Ising, XY, and Heisenberg models. Kompaniets M; Wiese KJ Phys Rev E; 2020 Jan; 101(1-1):012104. PubMed ID: 32069567 [TBL] [Abstract][Full Text] [Related]