These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 29758733)
1. Role of short periodic orbits in quantum maps with continuous openings. Prado CA; Carlo GG; Benito RM; Borondo F Phys Rev E; 2018 Apr; 97(4-1):042211. PubMed ID: 29758733 [TBL] [Abstract][Full Text] [Related]
2. Theory of short periodic orbits for partially open quantum maps. Carlo GG; Benito RM; Borondo F Phys Rev E; 2016 Jul; 94(1-1):012222. PubMed ID: 27575138 [TBL] [Abstract][Full Text] [Related]
3. Classical transients and the support of open quantum maps. Carlo GG; Wisniacki DA; Ermann L; Benito RM; Borondo F Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012909. PubMed ID: 23410406 [TBL] [Abstract][Full Text] [Related]
4. Lagrangian descriptors for open maps. Carlo GG; Borondo F Phys Rev E; 2020 Feb; 101(2-1):022208. PubMed ID: 32168688 [TBL] [Abstract][Full Text] [Related]
5. Localization of resonance eigenfunctions on quantum repellers. Ermann L; Carlo GG; Saraceno M Phys Rev Lett; 2009 Jul; 103(5):054102. PubMed ID: 19792503 [TBL] [Abstract][Full Text] [Related]
6. Short periodic orbit approach to resonances and the fractal Weyl law. Pedrosa JM; Wisniacki D; Carlo GG; Novaes M Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 2):036203. PubMed ID: 22587157 [TBL] [Abstract][Full Text] [Related]
7. Quantum chaotic resonances from short periodic orbits. Novaes M; Pedrosa JM; Wisniacki D; Carlo GG; Keating JP Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 2):035202. PubMed ID: 19905166 [TBL] [Abstract][Full Text] [Related]
8. Open quantum maps from complex scaling of kicked scattering systems. Mertig N; Shudo A Phys Rev E; 2018 Apr; 97(4-1):042216. PubMed ID: 29758738 [TBL] [Abstract][Full Text] [Related]
9. Semiclassical relation between open trajectories and periodic orbits for the Wigner time delay. Kuipers J; Sieber M Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Apr; 77(4 Pt 2):046219. PubMed ID: 18517722 [TBL] [Abstract][Full Text] [Related]
10. Classical dynamics and localization of resonances in the high-energy region of the hydrogen atom in crossed fields. Schweiner F; Main J; Cartarius H; Wunner G Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):012915. PubMed ID: 25679690 [TBL] [Abstract][Full Text] [Related]
11. Snap-back repellers and chaotic attractors. Gardini L; Tramontana F Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 2):046202. PubMed ID: 20481802 [TBL] [Abstract][Full Text] [Related]
13. Diffraction and spectral statistics in systems with a multilevel scatterer. Matzkin A; Monteiro TS Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Oct; 70(4 Pt 2):046215. PubMed ID: 15600503 [TBL] [Abstract][Full Text] [Related]
14. Accumulation of unstable periodic orbits and the stickiness in the two-dimensional piecewise linear map. Akaishi A; Shudo A Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 2):066211. PubMed ID: 20365258 [TBL] [Abstract][Full Text] [Related]
15. Relatively robust classical structures in dissipative quantum chaotic systems. Raviola LA; Carlo GG; Rivas AM Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 2):047201. PubMed ID: 20481861 [TBL] [Abstract][Full Text] [Related]
16. Transient features of quantum open maps. Ermann L; Carlo GG; Pedrosa JM; Saraceno M Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 2):066204. PubMed ID: 23005193 [TBL] [Abstract][Full Text] [Related]
18. Gaussian-optical approach to stable periodic orbit resonances of partially chaotic dielectric micro-cavities. Tureci H; Schwefel H; Stone A; Narimanov E Opt Express; 2002 Aug; 10(16):752-76. PubMed ID: 19451930 [TBL] [Abstract][Full Text] [Related]
19. Microwave study of quantum n-disk scattering. Lu W; Viola L; Pance K; Rose M; Sridhar S Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Apr; 61(4 Pt A):3652-63. PubMed ID: 11088143 [TBL] [Abstract][Full Text] [Related]
20. Analysis of stable periodic orbits in the one dimensional linear piecewise-smooth discontinuous map. Rajpathak B; Pillai HK; Bandyopadhyay S Chaos; 2012 Sep; 22(3):033126. PubMed ID: 23020465 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]