These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
93 related articles for article (PubMed ID: 29758734)
1. Mechanical instability and percolation of deformable particles through porous networks. Benet E; Lostec G; Pellegrino J; Vernerey F Phys Rev E; 2018 Apr; 97(4-1):042607. PubMed ID: 29758734 [TBL] [Abstract][Full Text] [Related]
2. Cooperative size sorting of deformable particles in porous media. O'Connell MG; Lu NB; Browne CA; Datta SS Soft Matter; 2019 Apr; 15(17):3620-3626. PubMed ID: 30973562 [TBL] [Abstract][Full Text] [Related]
3. Virus-sized colloid transport in a single pore: model development and sensitivity analysis. Seetha N; Mohan Kumar MS; Majid Hassanizadeh S; Raoof A J Contam Hydrol; 2014 Aug; 164():163-80. PubMed ID: 24992707 [TBL] [Abstract][Full Text] [Related]
4. Mechanics and stability of vesicles and droplets in confined spaces. Benet E; Vernerey FJ Phys Rev E; 2016 Dec; 94(6-1):062613. PubMed ID: 28085314 [TBL] [Abstract][Full Text] [Related]
5. Intrinsic Size Effect in Scaffolded Porous Calcium Silicate Particles and Mechanical Behavior of Their Self-Assembled Ensembles. Hwang SH; Shahsavari R ACS Appl Mater Interfaces; 2018 Jan; 10(1):890-899. PubMed ID: 29241004 [TBL] [Abstract][Full Text] [Related]
6. Langevin model for reactive transport in porous media. Tartakovsky AM Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 2):026302. PubMed ID: 20866900 [TBL] [Abstract][Full Text] [Related]
7. Phase Behavior and Percolation Properties of the Patchy Colloidal Fluids in the Random Porous Media. Kalyuzhnyi YV; Holovko M; Patsahan T; Cummings PT J Phys Chem Lett; 2014 Dec; 5(24):4260-4. PubMed ID: 26273972 [TBL] [Abstract][Full Text] [Related]
8. Modeling transport of soft particles in porous media. Li S; Yu HH; Fan J Phys Rev E; 2021 Aug; 104(2-2):025112. PubMed ID: 34525620 [TBL] [Abstract][Full Text] [Related]
9. Pore-scale modeling of competitive adsorption in porous media. Ryan EM; Tartakovsky AM; Amon C J Contam Hydrol; 2011 Mar; 120-121():56-78. PubMed ID: 20691495 [TBL] [Abstract][Full Text] [Related]
10. Mechanical trapping of particles in granular media. Kerimov A; Mavko G; Mukerji T; Al Ibrahim MA Phys Rev E; 2018 Feb; 97(2-1):022907. PubMed ID: 29548139 [TBL] [Abstract][Full Text] [Related]
11. Diffusive flux and magnetic manipulation of nanoparticles through porous membranes. Stephens JR; Beveridge JS; Latham AH; Williams ME Anal Chem; 2010 Apr; 82(8):3155-60. PubMed ID: 20235567 [TBL] [Abstract][Full Text] [Related]
12. 1.9 μm superficially porous packing material with radially oriented pores and tailored pore size for ultra-fast separation of small molecules and biomolecules. Min Y; Jiang B; Wu C; Xia S; Zhang X; Liang Z; Zhang L; Zhang Y J Chromatogr A; 2014 Aug; 1356():148-56. PubMed ID: 24999068 [TBL] [Abstract][Full Text] [Related]
13. Machine learning framework for analysis of transport through complex networks in porous, granular media: A focus on permeability. van der Linden JH; Narsilio GA; Tordesillas A Phys Rev E; 2016 Aug; 94(2-1):022904. PubMed ID: 27627377 [TBL] [Abstract][Full Text] [Related]
14. A study of the effects of column porosity on gradient separations of proteins. Urban J; Jandera P; Kucerová Z; van Straten MA; Claessens HA J Chromatogr A; 2007 Oct; 1167(1):63-75. PubMed ID: 17804002 [TBL] [Abstract][Full Text] [Related]
15. Percolation in directed scale-free networks. Schwartz N; Cohen R; Ben-Avraham D; Barabási AL; Havlin S Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jul; 66(1 Pt 2):015104. PubMed ID: 12241410 [TBL] [Abstract][Full Text] [Related]
16. Microscopic Mechanism and Percolation Model of Dynamic Deposition of Elemental Sulfur Particles in Acidic Gas Reservoirs. Wang L; Lu T; Li Z; Guo X ACS Omega; 2024 Jul; 9(28):30159-30168. PubMed ID: 39035907 [TBL] [Abstract][Full Text] [Related]
17. Effect of particle-size dynamics on properties of dense spongy-particle systems: Approach towards equilibrium. Zakhari MEA; Anderson PD; Hütter M Phys Rev E; 2017 Jul; 96(1-1):012604. PubMed ID: 29347218 [TBL] [Abstract][Full Text] [Related]
18. Bridging Macroscopic Diffusion and Microscopic Cavity Escape of Brownian and Active Particles in Irregular Porous Networks. Shi A; Schwartz DK ACS Nano; 2024 Aug; 18(34):22864-22873. PubMed ID: 39146529 [TBL] [Abstract][Full Text] [Related]
19. How changing the particle structure can speed up protein mass transfer kinetics in liquid chromatography. Gritti F; Horvath K; Guiochon G J Chromatogr A; 2012 Nov; 1263():84-98. PubMed ID: 23040978 [TBL] [Abstract][Full Text] [Related]
20. Fluctuations of random walks in critical random environments. Mardoukhi Y; Jeon JH; Chechkin AV; Metzler R Phys Chem Chem Phys; 2018 Aug; 20(31):20427-20438. PubMed ID: 30043029 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]