BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 29759222)

  • 1. A high-performance chiral selector derived from chitosan (p-methylbenzylurea) for efficient enantiomer separation.
    Tang S; Mei X; Chen W; Huang SH; Bai ZW
    Talanta; 2018 Aug; 185():42-52. PubMed ID: 29759222
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Performance comparison of chiral separation materials derived from N-cyclohexylcarbonyl and N-hexanoyl chitosans.
    Tang S; Liu JD; Chen W; Huang SH; Zhang J; Bai ZW
    J Chromatogr A; 2018 Jan; 1532():112-123. PubMed ID: 29246422
    [TBL] [Abstract][Full Text] [Related]  

  • 3. N-Acylated chitosan bis(arylcarbamate)s: A class of promising chiral separation materials with powerful enantioseparation capability and high eluents tolerability.
    Tang S; Liu JD; Bin Q; Fu KQ; Wang XC; Luo YB; Huang SH; Bai ZW
    J Chromatogr A; 2016 Dec; 1476():53-62. PubMed ID: 27863711
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of chitosan 3,6-diphenylcarbamate-2-urea derivatives and their applications as chiral stationary phases for high-performance liquid chromatography.
    Zhang L; Shen J; Zuo W; Okamoto Y
    J Chromatogr A; 2014 Oct; 1365():86-93. PubMed ID: 25262030
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-performance chiral stationary phases based on chitosan derivatives with a branched-chain alkyl urea.
    Liang S; Huang SH; Chen W; Bai ZW
    Anal Chim Acta; 2017 Sep; 985():183-193. PubMed ID: 28864189
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chiral stationary phases based on chitosan bis(methylphenylcarbamate)-(isobutyrylamide) for high-performance liquid chromatography.
    Tang S; Bin Q; Chen W; Bai ZW; Huang SH
    J Chromatogr A; 2016 Apr; 1440():112-122. PubMed ID: 26931425
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure screening and performance restoration of chiral separation materials based on chitosan derivatives.
    Zhang GH; Fu KQ; Xi JB; Chen W; Tang S; Bai ZW
    Carbohydr Polym; 2019 Jun; 214():259-268. PubMed ID: 30925995
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Eluent Tolerance and Enantioseparation Recovery of Chiral Packing Materials Based on Chitosan Bis(Phenylcarbamate)-(n-Octyl Urea)s for High Performance Liquid Chromatography.
    Wang J; Huang SH; Chen W; Bai ZW
    Molecules; 2016 Nov; 21(11):. PubMed ID: 27845761
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The interactions between chiral analytes and chitosan-based chiral stationary phases during enantioseparation.
    Chen W; Jiang JZ; Qiu GS; Tang S; Bai ZW
    J Chromatogr A; 2021 Aug; 1650():462259. PubMed ID: 34090134
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural dependence on the property of chiral stationary phases derived from chitosan bis(arylcarbamate)-(amide)s.
    Feng ZW; Qiu GS; Mei XM; Liang S; Yang F; Huang SH; Chen W; Bai ZW
    Carbohydr Polym; 2017 Jul; 168():301-309. PubMed ID: 28457453
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of substituted phenylcarbamates of N-cyclobutylformylated chitosan and their application as chiral selectors in enantioseparation.
    Zhang J; Wang XC; Chen W; Bai ZW
    Analyst; 2016 Jul; 141(14):4470-80. PubMed ID: 27191623
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Requirements in structure for chiral recognition of chitosan derivatives.
    Gao YY; Chen W; Bai ZW
    J Chromatogr A; 2023 Feb; 1690():463783. PubMed ID: 36657297
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Performances comparison of enantiomeric separation materials prepared from shrimp and crab shells.
    Yang F; Cai ML; Chen W; Bai ZW
    Carbohydr Polym; 2019 Jan; 204():238-246. PubMed ID: 30366536
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison in enantioseparation performance of chiral stationary phases prepared from chitosans of different sources and molecular weights.
    Zhang GH; Xi JB; Chen W; Bai ZW
    J Chromatogr A; 2020 Jun; 1621():461029. PubMed ID: 32192704
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chiral stationary phases based on chitosan bis(4-methylphenylcarbamate)-(alkoxyformamide).
    Feng ZW; Chen W; Bai ZW
    J Sep Sci; 2016 Oct; 39(19):3728-3735. PubMed ID: 27514503
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enantioseparation of selected chiral sulfoxides in high-performance liquid chromatography with polysaccharide-based chiral selectors in polar organic mobile phases with emphasis on enantiomer elution order.
    Gegenava M; Chankvetadze L; Farkas T; Chankvetadze B
    J Sep Sci; 2014 May; 37(9-10):1083-8. PubMed ID: 24634398
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Separation of enantiomers of chiral sulfoxides in high-performance liquid chromatography with cellulose-based chiral selectors using acetonitrile and acetonitrile-water mixtures as mobile phases.
    Shedania Z; Kakava R; Volonterio A; Farkas T; Chankvetadze B
    J Chromatogr A; 2020 Jan; 1609():460445. PubMed ID: 31431357
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enantioseparation characteristics of the chiral stationary phases based on natural and regenerated chitins.
    Mei XM; Chen W; Bai ZW
    J Sep Sci; 2017 Apr; 40(8):1710-1717. PubMed ID: 28225215
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent development trends for chiral stationary phases based on chitosan derivatives, cyclofructan derivatives and chiral porous materials in high performance liquid chromatography.
    Xie SM; Yuan LM
    J Sep Sci; 2019 Jan; 42(1):6-20. PubMed ID: 30152091
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and characterization of chitosan alkyl urea.
    Wang J; Jiang JZ; Chen W; Bai ZW
    Carbohydr Polym; 2016 Jul; 145():78-85. PubMed ID: 27106154
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.