These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
313 related articles for article (PubMed ID: 29760122)
1. Perturbations in mitochondrial dynamics by p66Shc lead to renal tubular oxidative injury in human diabetic nephropathy. Zhan M; Usman I; Yu J; Ruan L; Bian X; Yang J; Yang S; Sun L; Kanwar YS Clin Sci (Lond); 2018 Jun; 132(12):1297-1314. PubMed ID: 29760122 [TBL] [Abstract][Full Text] [Related]
2. p66Shc mediates high-glucose and angiotensin II-induced oxidative stress renal tubular injury via mitochondrial-dependent apoptotic pathway. Sun L; Xiao L; Nie J; Liu FY; Ling GH; Zhu XJ; Tang WB; Chen WC; Xia YC; Zhan M; Ma MM; Peng YM; Liu H; Liu YH; Kanwar YS Am J Physiol Renal Physiol; 2010 Nov; 299(5):F1014-25. PubMed ID: 20739391 [TBL] [Abstract][Full Text] [Related]
3. PKCδ promotes high glucose induced renal tubular oxidative damage via regulating activation and translocation of p66Shc. Song P; Yang S; Xiao L; Xu X; Tang C; Yang Y; Ma M; Zhu J; Liu F; Sun L Oxid Med Cell Longev; 2014; 2014():746531. PubMed ID: 25371776 [TBL] [Abstract][Full Text] [Related]
4. DsbA-L deficiency exacerbates mitochondrial dysfunction of tubular cells in diabetic kidney disease. Gao P; Yang M; Chen X; Xiong S; Liu J; Sun L Clin Sci (Lond); 2020 Apr; 134(7):677-694. PubMed ID: 32167139 [TBL] [Abstract][Full Text] [Related]
5. Probucol ameliorates renal injury in diabetic nephropathy by inhibiting the expression of the redox enzyme p66Shc. Yang S; Zhao L; Han Y; Liu Y; Chen C; Zhan M; Xiong X; Zhu X; Xiao L; Hu C; Liu F; Zhou Z; Kanwar YS; Sun L Redox Biol; 2017 Oct; 13():482-497. PubMed ID: 28728079 [TBL] [Abstract][Full Text] [Related]
6. The PKCβ-p66shc-NADPH oxidase pathway plays a crucial role in diabetic nephropathy. Cheng YS; Chao J; Chen C; Lv LL; Han YC; Liu BC J Pharm Pharmacol; 2019 Mar; 71(3):338-347. PubMed ID: 30417389 [TBL] [Abstract][Full Text] [Related]
7. Disruption of renal tubular mitochondrial quality control by Myo-inositol oxygenase in diabetic kidney disease. Zhan M; Usman IM; Sun L; Kanwar YS J Am Soc Nephrol; 2015 Jun; 26(6):1304-21. PubMed ID: 25270067 [TBL] [Abstract][Full Text] [Related]
8. myo-Inositol Oxygenase Overexpression Accentuates Generation of Reactive Oxygen Species and Exacerbates Cellular Injury following High Glucose Ambience: A NEW MECHANISM RELEVANT TO THE PATHOGENESIS OF DIABETIC NEPHROPATHY. Sun L; Dutta RK; Xie P; Kanwar YS J Biol Chem; 2016 Mar; 291(11):5688-5707. PubMed ID: 26792859 [TBL] [Abstract][Full Text] [Related]
9. Mitochondria-Targeted Peptide SS31 Attenuates Renal Tubulointerstitial Injury via Inhibiting Mitochondrial Fission in Diabetic Mice. Yang SK; Li AM; Han YC; Peng CH; Song N; Yang M; Zhan M; Zeng LF; Song PA; Zhang W; Tang SQ; Zhang H Oxid Med Cell Longev; 2019; 2019():2346580. PubMed ID: 31281569 [TBL] [Abstract][Full Text] [Related]
10. Chronic nicotine exposure augments renal oxidative stress and injury through transcriptional activation of p66shc. Arany I; Clark J; Reed DK; Juncos LA Nephrol Dial Transplant; 2013 Jun; 28(6):1417-25. PubMed ID: 23328708 [TBL] [Abstract][Full Text] [Related]
11. Hyperglycaemia Stress-Induced Renal Injury is Caused by Extensive Mitochondrial Fragmentation, Attenuated MKP1 Signalling, and Activated JNK-CaMKII-Fis1 Biological Axis. Zhang Y; Feng J; Wang Q; Zhao S; Yang S; Tian L; Meng P; Li J; Li H Cell Physiol Biochem; 2018; 51(4):1778-1798. PubMed ID: 30504726 [TBL] [Abstract][Full Text] [Related]
12. Advanced Oxidation Protein Products Aggravate Tubulointerstitial Fibrosis Through Protein Kinase C-Dependent Mitochondrial Injury in Early Diabetic Nephropathy. Li X; Xu L; Hou X; Geng J; Tian J; Liu X; Bai X Antioxid Redox Signal; 2019 Mar; 30(9):1162-1185. PubMed ID: 29482336 [TBL] [Abstract][Full Text] [Related]
13. p66Shc: A novel biomarker of tubular oxidative injury in patients with diabetic nephropathy. Xu X; Zhu X; Ma M; Han Y; Hu C; Yuan S; Yang Y; Xiao L; Liu F; Kanwar YS; Sun L Sci Rep; 2016 Jul; 6():29302. PubMed ID: 27377870 [TBL] [Abstract][Full Text] [Related]
14. Mitochondria-targeted antioxidant peptide SS31 prevents hypoxia/reoxygenation-induced apoptosis by down-regulating p66Shc in renal tubular epithelial cells. Zhao WY; Han S; Zhang L; Zhu YH; Wang LM; Zeng L Cell Physiol Biochem; 2013; 32(3):591-600. PubMed ID: 24021885 [TBL] [Abstract][Full Text] [Related]
15. p66SHC-mediated mitochondrial dysfunction in renal proximal tubule cells during oxidative injury. Arany I; Faisal A; Clark JS; Vera T; Baliga R; Nagamine Y Am J Physiol Renal Physiol; 2010 May; 298(5):F1214-21. PubMed ID: 20053790 [TBL] [Abstract][Full Text] [Related]
16. CB1 receptor antagonist rimonabant protects against chronic intermittent hypoxia-induced renal injury in rats. Zhao L; Liu T; Dou ZJ; Wang MT; Hu ZX; Wang B BMC Nephrol; 2021 Apr; 22(1):153. PubMed ID: 33902473 [TBL] [Abstract][Full Text] [Related]
17. Rap1 ameliorates renal tubular injury in diabetic nephropathy. Xiao L; Zhu X; Yang S; Liu F; Zhou Z; Zhan M; Xie P; Zhang D; Li J; Song P; Kanwar YS; Sun L Diabetes; 2014 Apr; 63(4):1366-80. PubMed ID: 24353183 [TBL] [Abstract][Full Text] [Related]
18. Role of p66shc in renal toxicity of oleic acid. Arany I; Clark JS; Reed DK; Juncos LA; Dixit M Am J Nephrol; 2013; 38(3):226-32. PubMed ID: 23988748 [TBL] [Abstract][Full Text] [Related]
19. NR4A1 Promotes Diabetic Nephropathy by Activating Mff-Mediated Mitochondrial Fission and Suppressing Parkin-Mediated Mitophagy. Sheng J; Li H; Dai Q; Lu C; Xu M; Zhang J; Feng J Cell Physiol Biochem; 2018; 48(4):1675-1693. PubMed ID: 30077998 [TBL] [Abstract][Full Text] [Related]
20. Klotho inhibits PKCα/p66SHC-mediated podocyte injury in diabetic nephropathy. Jiang W; Xiao T; Han W; Xiong J; He T; Liu Y; Huang Y; Yang K; Bi X; Xu X; Yu Y; Li Y; Gu J; Zhang J; Huang Y; Zhang B; Zhao J Mol Cell Endocrinol; 2019 Aug; 494():110490. PubMed ID: 31207271 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]