BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 2976039)

  • 1. Model of potassium dynamics in the central nervous system.
    Odette LL; Newman EA
    Glia; 1988; 1(3):198-210. PubMed ID: 2976039
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ionic changes and alterations in the size of the extracellular space during epileptic activity.
    Lux HD; Heinemann U; Dietzel I
    Adv Neurol; 1986; 44():619-39. PubMed ID: 3518349
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Do neuronal signals regulate potassium flow in glial cells? Evidence from an invertebrate central nervous system.
    Walz W
    J Neurosci Res; 1982; 7(1):71-9. PubMed ID: 7069800
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relations between slow extracellular potential changes, glial potassium buffering, and electrolyte and cellular volume changes during neuronal hyperactivity in cat brain.
    Dietzel I; Heinemann U; Lux HD
    Glia; 1989; 2(1):25-44. PubMed ID: 2523337
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of the glial envelope on extracellular K(+) diffusion in olfactory glomeruli.
    Goriely AR; Secomb TW; Tolbert LP
    J Neurophysiol; 2002 Apr; 87(4):1712-22. PubMed ID: 11929893
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of extracellular potassium dynamics in the different stages of ictal bursting and spreading depression: a computational study.
    Florence G; Dahlem MA; Almeida AC; Bassani JW; Kurths J
    J Theor Biol; 2009 May; 258(2):219-28. PubMed ID: 19490858
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of extracellular potassium concentration in epileptogenesis.
    Pedley TA; Fisher RS; Futamachi KJ; Prince DA
    Fed Proc; 1976 May; 35(6):1254-9. PubMed ID: 816678
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extracellular potassium accumulation in the nervous system.
    Orkand RK
    Fed Proc; 1980 Apr; 39(5):1515-8. PubMed ID: 7364046
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Model of electroretinogram b-wave generation: a test of the K+ hypothesis.
    Newman EA; Odette LL
    J Neurophysiol; 1984 Jan; 51(1):164-82. PubMed ID: 6319623
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identifying essential conditions for refractoriness of Leão's spreading depression-computational modeling.
    Teixeira HZ; Almeida AC; Infantosi AF; Rodrigues AM; Costa NL; Duarte MA
    Comput Biol Chem; 2008 Aug; 32(4):273-81. PubMed ID: 18485826
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatial buffering of potassium ions in brain extracellular space.
    Chen KC; Nicholson C
    Biophys J; 2000 Jun; 78(6):2776-97. PubMed ID: 10827962
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potassium buffering in the central nervous system.
    Kofuji P; Newman EA
    Neuroscience; 2004; 129(4):1045-56. PubMed ID: 15561419
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kir potassium channel subunit expression in retinal glial cells: implications for spatial potassium buffering.
    Kofuji P; Biedermann B; Siddharthan V; Raap M; Iandiev I; Milenkovic I; Thomzig A; Veh RW; Bringmann A; Reichenbach A
    Glia; 2002 Sep; 39(3):292-303. PubMed ID: 12203395
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of a synaptiform transmission between a neuron and a glial cell in the leech central nervous system.
    Britz FC; Lohr C; Schmidt J; Deitmer JW
    Glia; 2002 May; 38(3):215-27. PubMed ID: 11968059
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Molecular dynamics of K+ transport and its crucial involvement in signal transduction].
    Kurachi Y; Hibino H
    Nihon Shinkei Seishin Yakurigaku Zasshi; 2003 Jun; 23(3):135-8. PubMed ID: 12884754
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Switch of K+ buffering conditions in rabbit retinal Müller glial cells during postnatal development.
    Schopf S; Ruge H; Bringmann A; Reichenbach A; Skatchkov SN
    Neurosci Lett; 2004 Jul; 365(3):167-70. PubMed ID: 15246541
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diffusion in the slice microenvironment and implications for physiological studies.
    Nicholson C; Hounsgaard J
    Fed Proc; 1983 Sep; 42(12):2865-8. PubMed ID: 6350048
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potassium buffering by Müller cells isolated from the center and periphery of the frog retina.
    Skatchkov SN; Krusek J; Reichenbach A; Orkand RK
    Glia; 1999 Aug; 27(2):171-80. PubMed ID: 10417816
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extrasynaptic volume transmission and diffusion parameters of the extracellular space.
    Syková E
    Neuroscience; 2004; 129(4):861-76. PubMed ID: 15561404
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single ion channel currents in neuropile glial cells of the leech central nervous system.
    Müller M; Hanke W; Schlue WR
    Glia; 1993 Dec; 9(4):260-8. PubMed ID: 8112819
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.