These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 29760483)

  • 1. Structure and crystallography of foliated and chalk shell microstructures of the oyster Magallana: the same materials grown under different conditions.
    Checa AG; Harper EM; González-Segura A
    Sci Rep; 2018 May; 8(1):7507. PubMed ID: 29760483
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure and distribution of chalky deposits in the Pacific oyster using x-ray computed tomography (CT).
    Banker RMW; Sumner DY
    Sci Rep; 2020 Jul; 10(1):12118. PubMed ID: 32694560
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bending and branching of calcite laths in the foliated microstructure of pectinoidean bivalves occurs at coherent crystal lattice orientation.
    Checa AG; Yáñez-Ávila ME; González-Segura A; Varela-Feria F; Griesshaber E; Schmahl WW
    J Struct Biol; 2019 Mar; 205(3):7-17. PubMed ID: 30576768
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystallographic structure of the foliated calcite of bivalves.
    Checa AG; Esteban-Delgado FJ; Rodríguez-Navarro AB
    J Struct Biol; 2007 Feb; 157(2):393-402. PubMed ID: 17097305
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Organization and Formation of the Crossed-Foliated Biomineral Microstructure of Limpet Shells.
    Berent K; Gajewska M; Checa AG
    ACS Biomater Sci Eng; 2023 Dec; 9(12):6658-6669. PubMed ID: 37991876
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calcium carbonate unit realignment under acidification: A potential compensatory mechanism in an edible estuarine oyster.
    Meng Y; Guo Z; Yao H; Yeung KWK; Thiyagarajan V
    Mar Pollut Bull; 2019 Feb; 139():141-149. PubMed ID: 30686412
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Origin and expansion of foliated microstructure in pteriomorph bivalves.
    Esteban-Delgado FJ; Harper EM; Checa AG; Rodríguez-Navarro AB
    Biol Bull; 2008 Apr; 214(2):153-65. PubMed ID: 18400997
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Orientation patterns of aragonitic crossed-lamellar, fibrous prismatic and myostracal microstructures of modern Glycymeris shells.
    Crippa G; Griesshaber E; Checa AG; Harper EM; Simonet Roda M; Schmahl WW
    J Struct Biol; 2020 Dec; 212(3):107653. PubMed ID: 33148524
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Complex hierarchical microstructures of Cambrian mollusk Pelagiella: insight into early biomineralization and evolution.
    Li L; Zhang X; Yun H; Li G
    Sci Rep; 2017 May; 7(1):1935. PubMed ID: 28512325
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A study of the correlation between organic matrices and nanocomposite materials in oyster shell formation.
    Choi CS; Kim YW
    Biomaterials; 2000 Feb; 21(3):213-22. PubMed ID: 10646937
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanostructure and crystallography of aberrant columnar vaterite in Corbicula fluminea (Mollusca).
    Frenzel M; Harrison RJ; Harper EM
    J Struct Biol; 2012 Apr; 178(1):8-18. PubMed ID: 22381518
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Irregularities of crystallographic orientation and residual stresses in the crossed-lamellar shell as a natural functionally graded material.
    Bonarski JT; Checa AG; Rodriguez-Navarro A; Tarkowski L; Wajda W
    J R Soc Interface; 2015 Dec; 12(113):20150738. PubMed ID: 26631336
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nucleation and growth of calcite on native versus pyrolyzed oyster shell folia.
    Sikes CS; Wheeler AP; Wierzbicki A; Mount AS; Dillaman RM
    Biol Bull; 2000 Feb; 198(1):50-66. PubMed ID: 10707813
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New approach for fabrication of folded-structure SiO2 using oyster shell.
    Lee SW; Kang G; Lee KB; Park SB
    Micron; 2009 Oct; 40(7):713-8. PubMed ID: 19502070
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calcite crystal orientation patterns in the bilayers of laminated shells of benthic rotaliid foraminifera.
    Yin X; Griesshaber E; Checa A; Nindiyasari-Behal F; Sánchez-Almazo I; Ziegler A; Schmahl WW
    J Struct Biol; 2021 Jun; 213(2):107707. PubMed ID: 33581285
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biological strategy for the fabrication of highly ordered aragonite helices: the microstructure of the cavolinioidean gastropods.
    Checa AG; Macías-Sánchez E; Ramírez-Rico J
    Sci Rep; 2016 May; 6():25989. PubMed ID: 27181457
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of waste oyster shells and coal mine drainage sludge for the stabilization of As-, Pb-, and Cu-contaminated soil.
    Moon DH; Cheong KH; Koutsospyros A; Chang YY; Hyun S; Ok YS; Park JH
    Environ Sci Pollut Res Int; 2016 Feb; 23(3):2362-70. PubMed ID: 26411449
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biological control of crystallographic architecture: hierarchy and co-alignment parameters.
    Maier BJ; Griesshaber E; Alexa P; Ziegler A; Ubhi HS; Schmahl WW
    Acta Biomater; 2014 Sep; 10(9):3866-74. PubMed ID: 24590164
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Foamy oysters: vesicular microstructure production in the Gryphaeidae via emulsification.
    Checa AG; Linares F; Maldonado-Valderrama J; Harper EM
    J R Soc Interface; 2020 Sep; 17(170):20200505. PubMed ID: 32993433
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The structural, compositional and mechanical features of the calcite shell of the barnacle Tetraclita rufotincta.
    Astachov L; Nevo Z; Brosh T; Vago R
    J Struct Biol; 2011 Sep; 175(3):311-8. PubMed ID: 21549194
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.