BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 29760483)

  • 1. Structure and crystallography of foliated and chalk shell microstructures of the oyster Magallana: the same materials grown under different conditions.
    Checa AG; Harper EM; González-Segura A
    Sci Rep; 2018 May; 8(1):7507. PubMed ID: 29760483
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure and distribution of chalky deposits in the Pacific oyster using x-ray computed tomography (CT).
    Banker RMW; Sumner DY
    Sci Rep; 2020 Jul; 10(1):12118. PubMed ID: 32694560
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bending and branching of calcite laths in the foliated microstructure of pectinoidean bivalves occurs at coherent crystal lattice orientation.
    Checa AG; Yáñez-Ávila ME; González-Segura A; Varela-Feria F; Griesshaber E; Schmahl WW
    J Struct Biol; 2019 Mar; 205(3):7-17. PubMed ID: 30576768
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystallographic structure of the foliated calcite of bivalves.
    Checa AG; Esteban-Delgado FJ; Rodríguez-Navarro AB
    J Struct Biol; 2007 Feb; 157(2):393-402. PubMed ID: 17097305
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Organization and Formation of the Crossed-Foliated Biomineral Microstructure of Limpet Shells.
    Berent K; Gajewska M; Checa AG
    ACS Biomater Sci Eng; 2023 Dec; 9(12):6658-6669. PubMed ID: 37991876
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calcium carbonate unit realignment under acidification: A potential compensatory mechanism in an edible estuarine oyster.
    Meng Y; Guo Z; Yao H; Yeung KWK; Thiyagarajan V
    Mar Pollut Bull; 2019 Feb; 139():141-149. PubMed ID: 30686412
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Origin and expansion of foliated microstructure in pteriomorph bivalves.
    Esteban-Delgado FJ; Harper EM; Checa AG; Rodríguez-Navarro AB
    Biol Bull; 2008 Apr; 214(2):153-65. PubMed ID: 18400997
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Orientation patterns of aragonitic crossed-lamellar, fibrous prismatic and myostracal microstructures of modern Glycymeris shells.
    Crippa G; Griesshaber E; Checa AG; Harper EM; Simonet Roda M; Schmahl WW
    J Struct Biol; 2020 Dec; 212(3):107653. PubMed ID: 33148524
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Complex hierarchical microstructures of Cambrian mollusk Pelagiella: insight into early biomineralization and evolution.
    Li L; Zhang X; Yun H; Li G
    Sci Rep; 2017 May; 7(1):1935. PubMed ID: 28512325
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A study of the correlation between organic matrices and nanocomposite materials in oyster shell formation.
    Choi CS; Kim YW
    Biomaterials; 2000 Feb; 21(3):213-22. PubMed ID: 10646937
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanostructure and crystallography of aberrant columnar vaterite in Corbicula fluminea (Mollusca).
    Frenzel M; Harrison RJ; Harper EM
    J Struct Biol; 2012 Apr; 178(1):8-18. PubMed ID: 22381518
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Irregularities of crystallographic orientation and residual stresses in the crossed-lamellar shell as a natural functionally graded material.
    Bonarski JT; Checa AG; Rodriguez-Navarro A; Tarkowski L; Wajda W
    J R Soc Interface; 2015 Dec; 12(113):20150738. PubMed ID: 26631336
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nucleation and growth of calcite on native versus pyrolyzed oyster shell folia.
    Sikes CS; Wheeler AP; Wierzbicki A; Mount AS; Dillaman RM
    Biol Bull; 2000 Feb; 198(1):50-66. PubMed ID: 10707813
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New approach for fabrication of folded-structure SiO2 using oyster shell.
    Lee SW; Kang G; Lee KB; Park SB
    Micron; 2009 Oct; 40(7):713-8. PubMed ID: 19502070
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calcite crystal orientation patterns in the bilayers of laminated shells of benthic rotaliid foraminifera.
    Yin X; Griesshaber E; Checa A; Nindiyasari-Behal F; Sánchez-Almazo I; Ziegler A; Schmahl WW
    J Struct Biol; 2021 Jun; 213(2):107707. PubMed ID: 33581285
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biological strategy for the fabrication of highly ordered aragonite helices: the microstructure of the cavolinioidean gastropods.
    Checa AG; Macías-Sánchez E; Ramírez-Rico J
    Sci Rep; 2016 May; 6():25989. PubMed ID: 27181457
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of waste oyster shells and coal mine drainage sludge for the stabilization of As-, Pb-, and Cu-contaminated soil.
    Moon DH; Cheong KH; Koutsospyros A; Chang YY; Hyun S; Ok YS; Park JH
    Environ Sci Pollut Res Int; 2016 Feb; 23(3):2362-70. PubMed ID: 26411449
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biological control of crystallographic architecture: hierarchy and co-alignment parameters.
    Maier BJ; Griesshaber E; Alexa P; Ziegler A; Ubhi HS; Schmahl WW
    Acta Biomater; 2014 Sep; 10(9):3866-74. PubMed ID: 24590164
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Foamy oysters: vesicular microstructure production in the Gryphaeidae via emulsification.
    Checa AG; Linares F; Maldonado-Valderrama J; Harper EM
    J R Soc Interface; 2020 Sep; 17(170):20200505. PubMed ID: 32993433
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The structural, compositional and mechanical features of the calcite shell of the barnacle Tetraclita rufotincta.
    Astachov L; Nevo Z; Brosh T; Vago R
    J Struct Biol; 2011 Sep; 175(3):311-8. PubMed ID: 21549194
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.