These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 29760522)

  • 1. Carbon nanotube bundles with tensile strength over 80 GPa.
    Bai Y; Zhang R; Ye X; Zhu Z; Xie H; Shen B; Cai D; Liu B; Zhang C; Jia Z; Zhang S; Li X; Wei F
    Nat Nanotechnol; 2018 Jul; 13(7):589-595. PubMed ID: 29760522
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlled Synthesis of Ultralong Carbon Nanotubes with Perfect Structures and Extraordinary Properties.
    Zhang R; Zhang Y; Wei F
    Acc Chem Res; 2017 Feb; 50(2):179-189. PubMed ID: 28186727
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A predictive model of the tensile strength of twisted carbon nanotube yarns.
    Jeon SY; Jang J; Koo BW; Kim YW; Yu WR
    Nanotechnology; 2017 Jan; 28(1):015703. PubMed ID: 27897138
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cross-linking multiwall carbon nanotubes using PFPA to build robust, flexible and highly aligned large-scale sheets and yarns.
    Inoue Y; Nakamura K; Miyasaka Y; Nakano T; Kletetschka G
    Nanotechnology; 2016 Mar; 27(11):115701. PubMed ID: 26871413
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular Dynamics Simulations and Theoretical Model for Engineering Tensile Properties of Single-and Multi-Walled Carbon Nanotubes.
    Shirasu K; Kitayama S; Liu F; Yamamoto G; Hashida T
    Nanomaterials (Basel); 2021 Mar; 11(3):. PubMed ID: 33808899
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Moldable elastomeric polyester-carbon nanotube scaffolds for cardiac tissue engineering.
    Ahadian S; Davenport Huyer L; Estili M; Yee B; Smith N; Xu Z; Sun Y; Radisic M
    Acta Biomater; 2017 Apr; 52():81-91. PubMed ID: 27940161
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tensile properties of millimeter-long multi-walled carbon nanotubes.
    Kim HI; Wang M; Lee SK; Kang J; Nam JD; Ci L; Suhr J
    Sci Rep; 2017 Aug; 7(1):9512. PubMed ID: 28842673
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controllable Preparation and Strengthening Strategies towards High-Strength Carbon Nanotube Fibers.
    Zhu Y; Yue H; Aslam MJ; Bai Y; Zhu Z; Wei F
    Nanomaterials (Basel); 2022 Oct; 12(19):. PubMed ID: 36234606
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication and Characterization of Solid Composite Yarns from Carbon Nanotubes and Poly(dicyclopentadiene).
    Xin W; Severino J; Venkert A; Yu H; Knorr D; Yang JM; Carlson L; Hicks R; De Rosa I
    Nanomaterials (Basel); 2020 Apr; 10(4):. PubMed ID: 32290088
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strong and Conductive Dry Carbon Nanotube Films by Microcombing.
    Zhang L; Wang X; Xu W; Zhang Y; Li Q; Bradford PD; Zhu Y
    Small; 2015 Aug; 11(31):3830-6. PubMed ID: 25941071
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Great Reduction of a Carbon Nanotube's Mechanical Performance by a Few Topological Defects.
    Zhu L; Wang J; Ding F
    ACS Nano; 2016 Jun; 10(6):6410-5. PubMed ID: 27251448
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-strength carbon nanotube/carbon composite fibers via chemical vapor infiltration.
    Lee J; Kim T; Jung Y; Jung K; Park J; Lee DM; Jeong HS; Hwang JY; Park CR; Lee KH; Kim SM
    Nanoscale; 2016 Dec; 8(45):18972-18979. PubMed ID: 27808334
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Torsional fracture of carbon nanotube bundles: a reactive molecular dynamics study.
    Pereira Júnior ML; de Sousa Oliveira T; Monteiro FF; da Cunha WF; de Oliveira Neto PH; Ribeiro Júnior LA
    Phys Chem Chem Phys; 2022 Jun; 24(24):15068-15074. PubMed ID: 35696995
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increased tensile strength of carbon nanotube yarns and sheets through chemical modification and electron beam irradiation.
    Miller SG; Williams TS; Baker JS; Solá F; Lebron-Colon M; McCorkle LS; Wilmoth NG; Gaier J; Chen M; Meador MA
    ACS Appl Mater Interfaces; 2014 May; 6(9):6120-6. PubMed ID: 24720450
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shampoo assisted aligning of carbon nanotubes toward strong, stiff and conductive fibers.
    Wang J; Zhao J; Qiu L; Li F; Xu C; Wu K; Wang P; Zhang X; Li Q
    RSC Adv; 2020 May; 10(32):18715-18720. PubMed ID: 35518311
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-Carbon-Nanotube Manipulations and Devices Based on Macroscale Anthracene Flakes.
    Shen B; Zhu Z; Zhang J; Xie H; Bai Y; Wei F
    Adv Mater; 2018 Feb; 30(7):. PubMed ID: 29271506
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiscale stochastic simulations for tensile testing of nanotube-based macroscopic cables.
    Pugno NM; Bosia F; Carpinteri A
    Small; 2008 Aug; 4(8):1044-52. PubMed ID: 18666164
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Torsional Properties of Bundles with Randomly Packed Carbon Nanotubes.
    Wei H; Ting HZJ; Gong Y; Lü C; Glukhova OE; Zhan H
    Nanomaterials (Basel); 2022 Feb; 12(5):. PubMed ID: 35269252
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cross-links in carbon nanotube assembly introduced by using polyacrylonitrile as precursor.
    Cui Y; Zhang M
    ACS Appl Mater Interfaces; 2013 Aug; 5(16):8173-8. PubMed ID: 23901778
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polyaniline/carbon nanotube sheet nanocomposites: fabrication and characterization.
    Kim JW; Siochi EJ; Carpena-Núñez J; Wise KE; Connell JW; Lin Y; Wincheski RA
    ACS Appl Mater Interfaces; 2013 Sep; 5(17):8597-606. PubMed ID: 23981043
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.