These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 29760525)

  • 21. Activity- and BDNF-induced plasticity of miniature synaptic currents in ES cell-derived neurons integrated in a neocortical network.
    Copi A; Jüngling K; Gottmann K
    J Neurophysiol; 2005 Dec; 94(6):4538-43. PubMed ID: 16293594
    [TBL] [Abstract][Full Text] [Related]  

  • 22. β-Amyloid triggers aberrant over-scaling of homeostatic synaptic plasticity.
    Gilbert J; Shu S; Yang X; Lu Y; Zhu LQ; Man HY
    Acta Neuropathol Commun; 2016 Dec; 4(1):131. PubMed ID: 27955702
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Receptor saturation controls short-term synaptic plasticity at corticothalamic synapses.
    Sun YG; Beierlein M
    J Neurophysiol; 2011 May; 105(5):2319-29. PubMed ID: 21325678
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Homeostatic plasticity and synaptic scaling in the adult mouse auditory cortex.
    Teichert M; Liebmann L; Hübner CA; Bolz J
    Sci Rep; 2017 Dec; 7(1):17423. PubMed ID: 29234064
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Activity-dependent scaling of quantal amplitude in neocortical neurons.
    Turrigiano GG; Leslie KR; Desai NS; Rutherford LC; Nelson SB
    Nature; 1998 Feb; 391(6670):892-6. PubMed ID: 9495341
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Selective impairment of some forms of synaptic plasticity by oligomeric amyloid-β peptide in the mouse hippocampus: implication of extrasynaptic NMDA receptors.
    Kervern M; Angeli A; Nicole O; Léveillé F; Parent B; Villette V; Buisson A; Dutar P
    J Alzheimers Dis; 2012; 32(1):183-96. PubMed ID: 22785392
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evidence for glycinergic GluN1/GluN3 NMDA receptors in hippocampal metaplasticity.
    Rozeboom AM; Queenan BN; Partridge JG; Farnham C; Wu JY; Vicini S; Pak DT
    Neurobiol Learn Mem; 2015 Nov; 125():265-73. PubMed ID: 26477834
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Glucocorticoid receptor activation selectively hampers N-methyl-D-aspartate receptor dependent hippocampal synaptic plasticity in vitro.
    Wiegert O; Pu Z; Shor S; Joëls M; Krugers H
    Neuroscience; 2005; 135(2):403-11. PubMed ID: 16125856
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Rapid plasticity at inhibitory and excitatory synapses in the hippocampus induced by ictal epileptiform discharges.
    Lopantsev V; Both M; Draguhn A
    Eur J Neurosci; 2009 Mar; 29(6):1153-64. PubMed ID: 19302151
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sensory modality-specific homeostatic plasticity in the developing optic tectum.
    Deeg KE; Aizenman CD
    Nat Neurosci; 2011 May; 14(5):548-50. PubMed ID: 21441922
    [TBL] [Abstract][Full Text] [Related]  

  • 31. NMDA receptors and L-type voltage-gated Ca²⁺ channels mediate the expression of bidirectional homeostatic intrinsic plasticity in cultured hippocampal neurons.
    Lee KY; Chung HJ
    Neuroscience; 2014 Sep; 277():610-23. PubMed ID: 25086314
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Selective alterations of NMDAR function and plasticity in D1 and D2 medium spiny neurons in the nucleus accumbens shell following chronic intermittent ethanol exposure.
    Renteria R; Maier EY; Buske TR; Morrisett RA
    Neuropharmacology; 2017 Jan; 112(Pt A):164-171. PubMed ID: 26946430
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Experience-dependent modification of synaptic plasticity in visual cortex.
    Kirkwood A; Rioult MC; Bear MF
    Nature; 1996 Jun; 381(6582):526-8. PubMed ID: 8632826
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Plasticity of synaptic GluN receptors is required for the Src-dependent induction of long-term potentiation at CA3-CA1 synapses.
    Li HB; Jackson MF; Yang K; Trepanier C; Salter MW; Orser BA; Macdonald JF
    Hippocampus; 2011 Oct; 21(10):1053-61. PubMed ID: 20865743
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Corticostriatal paired-pulse potentiation produced by voltage-dependent activation of NMDA receptors and L-type Ca(2+) channels.
    Akopian G; Walsh JP
    J Neurophysiol; 2002 Jan; 87(1):157-65. PubMed ID: 11784738
    [TBL] [Abstract][Full Text] [Related]  

  • 36. NMDAR EPSC kinetics do not regulate the critical period for LTP at thalamocortical synapses.
    Barth AL; Malenka RC
    Nat Neurosci; 2001 Mar; 4(3):235-6. PubMed ID: 11224537
    [No Abstract]   [Full Text] [Related]  

  • 37. Firing rate homeostasis in visual cortex of freely behaving rodents.
    Hengen KB; Lambo ME; Van Hooser SD; Katz DB; Turrigiano GG
    Neuron; 2013 Oct; 80(2):335-42. PubMed ID: 24139038
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [The features of postsynaptic currents in primary culture of rat cortical neurons].
    Sibarov DA; Antonov SM
    Ross Fiziol Zh Im I M Sechenova; 2013 Jun; 99(6):763-75. PubMed ID: 24459886
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Muscarinic acetylcholine receptors control baseline activity and Hebbian stimulus timing-dependent plasticity in fusiform cells of the dorsal cochlear nucleus.
    Stefanescu RA; Shore SE
    J Neurophysiol; 2017 Mar; 117(3):1229-1238. PubMed ID: 28003407
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Timing-dependent LTP and LTD in mouse primary visual cortex following different visual deprivation models.
    Guo Y; Zhang W; Chen X; Fu J; Cheng W; Song D; Qu X; Yang Z; Zhao K
    PLoS One; 2017; 12(5):e0176603. PubMed ID: 28520739
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.