These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

311 related articles for article (PubMed ID: 29760575)

  • 1. The development of human visual cortex and clinical implications.
    Siu CR; Murphy KM
    Eye Brain; 2018; 10():25-36. PubMed ID: 29760575
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of Glutamatergic Proteins in Human Visual Cortex across the Lifespan.
    Siu CR; Beshara SP; Jones DG; Murphy KM
    J Neurosci; 2017 Jun; 37(25):6031-6042. PubMed ID: 28554889
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long-term Monocular Deprivation during Juvenile Critical Period Disrupts Binocular Integration in Mouse Visual Thalamus.
    Huh CYL; Abdelaal K; Salinas KJ; Gu D; Zeitoun J; Figueroa Velez DX; Peach JP; Fowlkes CC; Gandhi SP
    J Neurosci; 2020 Jan; 40(3):585-604. PubMed ID: 31767678
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Classification of Visual Cortex Plasticity Phenotypes following Treatment for Amblyopia.
    Balsor JL; Jones DG; Murphy KM
    Neural Plast; 2019; 2019():2564018. PubMed ID: 31565045
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional Differentiation of Mouse Visual Cortical Areas Depends upon Early Binocular Experience.
    Salinas KJ; Huh CYL; Zeitoun JH; Gandhi SP
    J Neurosci; 2021 Feb; 41(7):1470-1488. PubMed ID: 33376158
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Excitatory Contribution to Binocular Interactions in Human Visual Cortex Is Reduced in Strabismic Amblyopia.
    Hou 侯川 C; Tyson TL; Uner IJ; Nicholas SC; Verghese P
    J Neurosci; 2021 Oct; 41(41):8632-8643. PubMed ID: 34433631
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Binocular input coincidence mediates critical period plasticity in the mouse primary visual cortex.
    Chen XJ; Rasch MJ; Chen G; Ye CQ; Wu S; Zhang XH
    J Neurosci; 2014 Feb; 34(8):2940-55. PubMed ID: 24553935
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterizing synaptic protein development in human visual cortex enables alignment of synaptic age with rat visual cortex.
    Pinto JG; Jones DG; Williams CK; Murphy KM
    Front Neural Circuits; 2015; 9():3. PubMed ID: 25729353
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experience-dependent central vision deficits: Neurobiology and visual acuity.
    Williams K; Balsor JL; Beshara S; Beston BR; Jones DG; Murphy KM
    Vision Res; 2015 Sep; 114():68-78. PubMed ID: 25668772
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Altered functional interactions between neurons in primary visual cortex of macaque monkeys with experimental amblyopia.
    Acar K; Kiorpes L; Movshon JA; Smith MA
    J Neurophysiol; 2019 Dec; 122(6):2243-2258. PubMed ID: 31553685
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Degraded attentional modulation of cortical neural populations in strabismic amblyopia.
    Hou C; Kim YJ; Lai XJ; Verghese P
    J Vis; 2016; 16(3):16. PubMed ID: 26885628
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How the mechanisms of long-term synaptic potentiation and depression serve experience-dependent plasticity in primary visual cortex.
    Cooke SF; Bear MF
    Philos Trans R Soc Lond B Biol Sci; 2014 Jan; 369(1633):20130284. PubMed ID: 24298166
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neuronal responses in visual area V2 (V2) of macaque monkeys with strabismic amblyopia.
    Bi H; Zhang B; Tao X; Harwerth RS; Smith EL; Chino YM
    Cereb Cortex; 2011 Sep; 21(9):2033-45. PubMed ID: 21263036
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synaptic Correlates of Low-Level Perception in V1.
    Gerard-Mercier F; Carelli PV; Pananceau M; Troncoso XG; Frégnac Y
    J Neurosci; 2016 Apr; 36(14):3925-42. PubMed ID: 27053201
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of top-down influence affects trafficking of glutamatergic receptors in the primary visual cortex.
    Zhang S; Ding J; Tu Y; Zhang Q; Ye Z; Yu H; Sun Q; Hua T
    Biochem Biophys Res Commun; 2022 Dec; 632():17-23. PubMed ID: 36191373
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Understanding the development of amblyopia using macaque monkey models.
    Kiorpes L
    Proc Natl Acad Sci U S A; 2019 Dec; 116(52):26217-26223. PubMed ID: 31871163
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Short-term monocular deprivation alters GABA in the adult human visual cortex.
    Lunghi C; Emir UE; Morrone MC; Bridge H
    Curr Biol; 2015 Jun; 25(11):1496-501. PubMed ID: 26004760
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasticity Beyond V1: Reinforcement of Motion Perception upon Binocular Central Retinal Lesions in Adulthood.
    Burnat K; Hu TT; Kossut M; Eysel UT; Arckens L
    J Neurosci; 2017 Sep; 37(37):8989-8999. PubMed ID: 28821647
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid plasticity of binocular connections in developing monkey visual cortex (V1).
    Zhang B; Bi H; Sakai E; Maruko I; Zheng J; Smith EL; Chino YM
    Proc Natl Acad Sci U S A; 2005 Jun; 102(25):9026-31. PubMed ID: 15956191
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correlation of vision loss with tactile-evoked V1 responses in retinitis pigmentosa.
    Cunningham SI; Weiland JD; Bao P; Lopez-Jaime GR; Tjan BS
    Vision Res; 2015 Jun; 111(Pt B):197-207. PubMed ID: 25449160
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.