These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

312 related articles for article (PubMed ID: 29761268)

  • 1. Towards a comprehensive picture of C-to-U RNA editing sites in angiosperm mitochondria.
    Edera AA; Gandini CL; Sanchez-Puerta MV
    Plant Mol Biol; 2018 Jun; 97(3):215-231. PubMed ID: 29761268
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extensive loss of RNA editing sites in rapidly evolving Silene mitochondrial genomes: selection vs. retroprocessing as the driving force.
    Sloan DB; MacQueen AH; Alverson AJ; Palmer JD; Taylor DR
    Genetics; 2010 Aug; 185(4):1369-80. PubMed ID: 20479143
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolutionary Model of Plastidial RNA Editing in Angiosperms Presumed from Genome-Wide Analysis of Amborella trichopoda.
    Ishibashi K; Small I; Shikanai T
    Plant Cell Physiol; 2019 Oct; 60(10):2141-2151. PubMed ID: 31150097
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling sites of RNA editing as a fifth nucleotide state reveals progressive loss of edited sites from angiosperm mitochondria.
    Mower JP
    Mol Biol Evol; 2008 Jan; 25(1):52-61. PubMed ID: 17940211
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The dual-targeted RNA editing factor AEF1 is universally conserved among angiosperms and reveals only minor adaptations upon loss of its chloroplast or its mitochondrial target.
    Hein A; Brenner S; Polsakiewicz M; Knoop V
    Plant Mol Biol; 2020 Jan; 102(1-2):185-198. PubMed ID: 31797248
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Are substitution rates and RNA editing correlated?
    Cuenca A; Petersen G; Seberg O; Davis JI; Stevenson DW
    BMC Evol Biol; 2010 Nov; 10():349. PubMed ID: 21070620
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Editing site analysis in a gymnosperm mitochondrial genome reveals similarities with angiosperm mitochondrial genomes.
    Salmans ML; Chaw SM; Lin CP; Shih AC; Wu YW; Mulligan RM
    Curr Genet; 2010 Oct; 56(5):439-46. PubMed ID: 20617318
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The "fossilized" mitochondrial genome of Liriodendron tulipifera: ancestral gene content and order, ancestral editing sites, and extraordinarily low mutation rate.
    Richardson AO; Rice DW; Young GJ; Alverson AJ; Palmer JD
    BMC Biol; 2013 Apr; 11():29. PubMed ID: 23587068
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Discovery of the rpl10 gene in diverse plant mitochondrial genomes and its probable replacement by the nuclear gene for chloroplast RPL10 in two lineages of angiosperms.
    Kubo N; Arimura S
    DNA Res; 2010 Feb; 17(1):1-9. PubMed ID: 19934175
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conservation of the organization of the mitochondrial nad3 and rps12 genes in evolutionarily distant angiosperms.
    Perrotta G; Regina TM; Ceci LR; Quagliariello C
    Mol Gen Genet; 1996 Jun; 251(3):326-37. PubMed ID: 8676875
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The draft mitochondrial genome of Magnolia biondii and mitochondrial phylogenomics of angiosperms.
    Dong S; Chen L; Liu Y; Wang Y; Zhang S; Yang L; Lang X; Zhang S
    PLoS One; 2020; 15(4):e0231020. PubMed ID: 32294100
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Localized Retroprocessing as a Model of Intron Loss in the Plant Mitochondrial Genome.
    Cuenca A; Ross TG; Graham SW; Barrett CF; Davis JI; Seberg O; Petersen G
    Genome Biol Evol; 2016 Aug; 8(7):2176-89. PubMed ID: 27435795
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Complete loss of RNA editing from the plastid genome and most highly expressed mitochondrial genes of Welwitschia mirabilis.
    Fan W; Guo W; Funk L; Mower JP; Zhu A
    Sci China Life Sci; 2019 Apr; 62(4):498-506. PubMed ID: 30863960
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PREP-Mt: predictive RNA editor for plant mitochondrial genes.
    Mower JP
    BMC Bioinformatics; 2005 Apr; 6():96. PubMed ID: 15826309
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Loss of matK RNA editing in seed plant chloroplasts.
    Tillich M; Sy VL; Schulerowitz K; von Haeseler A; Maier UG; Schmitz-Linneweber C
    BMC Evol Biol; 2009 Aug; 9():201. PubMed ID: 19678945
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reverse U-to-C editing exceeds C-to-U RNA editing in some ferns - a monilophyte-wide comparison of chloroplast and mitochondrial RNA editing suggests independent evolution of the two processes in both organelles.
    Knie N; Grewe F; Fischer S; Knoop V
    BMC Evol Biol; 2016 Jun; 16(1):134. PubMed ID: 27329857
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Breaking the limits - multichromosomal structure of an early eudicot Pulsatilla patens mitogenome reveals extensive RNA-editing, longest repeats and chloroplast derived regions among sequenced land plant mitogenomes.
    Szandar K; Krawczyk K; Myszczyński K; Ślipiko M; Sawicki J; Szczecińska M
    BMC Plant Biol; 2022 Mar; 22(1):109. PubMed ID: 35264098
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitochondrial Retroprocessing Promoted Functional Transfers of rpl5 to the Nucleus in Grasses.
    Wu Z; Sloan DB; Brown CW; Rosenblueth M; Palmer JD; Ong HC
    Mol Biol Evol; 2017 Sep; 34(9):2340-2354. PubMed ID: 28541477
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RNA editing sites exist in protein-coding genes in the chloroplast genome of Cycas taitungensis.
    Chen H; Deng L; Jiang Y; Lu P; Yu J
    J Integr Plant Biol; 2011 Dec; 53(12):961-70. PubMed ID: 22044752
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Did RNA editing in plant organellar genomes originate under natural selection or through genetic drift?
    Jobson RW; Qiu YL
    Biol Direct; 2008 Oct; 3():43. PubMed ID: 18939975
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.