BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 29761509)

  • 1. Similar geometric rules govern the distribution of veins and stomata in petals, sepals and leaves.
    Zhang FP; Carins Murphy MR; Cardoso AA; Jordan GJ; Brodribb TJ
    New Phytol; 2018 Sep; 219(4):1224-1234. PubMed ID: 29761509
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acclimation to humidity modifies the link between leaf size and the density of veins and stomata.
    Carins Murphy MR; Jordan GJ; Brodribb TJ
    Plant Cell Environ; 2014 Jan; 37(1):124-31. PubMed ID: 23682831
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell expansion not cell differentiation predominantly co-ordinates veins and stomata within and among herbs and woody angiosperms grown under sun and shade.
    Carins Murphy MR; Jordan GJ; Brodribb TJ
    Ann Bot; 2016 Nov; 118(6):1127-1138. PubMed ID: 27578763
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Uncorrelated evolution of leaf and petal venation patterns across the angiosperm phylogeny.
    Roddy AB; Guilliams CM; Lilittham T; Farmer J; Wormser V; Pham T; Fine PV; Feild TS; Dawson TE
    J Exp Bot; 2013 Oct; 64(13):4081-8. PubMed ID: 23963676
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ferns are less dependent on passive dilution by cell expansion to coordinate leaf vein and stomatal spacing than angiosperms.
    Carins Murphy MR; Jordan GJ; Brodribb TJ
    PLoS One; 2017; 12(9):e0185648. PubMed ID: 28953931
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transport efficiency through uniformity: organization of veins and stomata in angiosperm leaves.
    Fiorin L; Brodribb TJ; Anfodillo T
    New Phytol; 2016 Jan; 209(1):216-27. PubMed ID: 26224215
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Water supply and demand remain coordinated during breakdown of the global scaling relationship between leaf size and major vein density.
    Schneider JV; Habersetzer J; Rabenstein R; Wesenberg J; Wesche K; Zizka G
    New Phytol; 2017 Apr; 214(1):473-486. PubMed ID: 28005294
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Linking leaf hydraulic properties, photosynthetic rates, and leaf lifespan in xerophytic species: a test of global hypotheses.
    Li F; McCulloh KA; Sun S; Bao W
    Am J Bot; 2018 Nov; 105(11):1858-1868. PubMed ID: 30449045
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Competition for epidermal space in the evolution of leaves with high physiological rates.
    Baresch A; Crifò C; Boyce CK
    New Phytol; 2019 Jan; 221(2):628-639. PubMed ID: 30216453
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unified changes in cell size permit coordinated leaf evolution.
    Brodribb TJ; Jordan GJ; Carpenter RJ
    New Phytol; 2013 Jul; 199(2):559-570. PubMed ID: 23647069
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extended differentiation of veins and stomata is essential for the expansion of large leaves in Rheum rhabarbarum.
    Cardoso AA; Randall JM; Jordan GJ; McAdam SAM
    Am J Bot; 2018 Dec; 105(12):1967-1974. PubMed ID: 30475383
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SHORTROOT-Mediated Increase in Stomatal Density Has No Impact on Photosynthetic Efficiency.
    Schuler ML; Sedelnikova OV; Walker BJ; Westhoff P; Langdale JA
    Plant Physiol; 2018 Jan; 176(1):757-772. PubMed ID: 29127261
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Allometric co-variation of xylem and stomata across diverse woody seedlings.
    Zhong M; Cerabolini BEL; Castro-Díez P; Puyravaud JP; Cornelissen JHC
    Plant Cell Environ; 2020 Sep; 43(9):2301-2310. PubMed ID: 32542660
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Global convergence in the balance between leaf water supply and demand across vascular land plants.
    Wen Y; Zhao WL; Cao KF
    Funct Plant Biol; 2020 Sep; 47(10):904-911. PubMed ID: 32635988
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How do leaf veins influence the worldwide leaf economic spectrum? Review and synthesis.
    Sack L; Scoffoni C; John GP; Poorter H; Mason CM; Mendez-Alonzo R; Donovan LA
    J Exp Bot; 2013 Oct; 64(13):4053-80. PubMed ID: 24123455
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diverse mangroves deviate from other angiosperms in their genome size, leaf cell size and cell packing density relationships.
    Jiang GF; Li SY; Dinnage R; Cao KF; Simonin KA; Roddy AB
    Ann Bot; 2023 Mar; 131(2):347-360. PubMed ID: 36516425
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Apparent Overinvestment in Leaf Venation Relaxes Leaf Morphological Constraints on Photosynthesis in Arid Habitats.
    de Boer HJ; Drake PL; Wendt E; Price CA; Schulze ED; Turner NC; Nicolle D; Veneklaas EJ
    Plant Physiol; 2016 Dec; 172(4):2286-2299. PubMed ID: 27784769
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Early spring flowers rely on xylem hydration but are not limited by stem xylem conductivity.
    McMann N; Peichel A; Savage JA
    New Phytol; 2022 Jan; 233(2):838-850. PubMed ID: 34618926
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Smaller stomata require less severe leaf drying to close: a case study in Rosa hydrida.
    Giday H; Kjaer KH; Fanourakis D; Ottosen CO
    J Plant Physiol; 2013 Oct; 170(15):1309-16. PubMed ID: 23726470
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimal allocation of leaf epidermal area for gas exchange.
    de Boer HJ; Price CA; Wagner-Cremer F; Dekker SC; Franks PJ; Veneklaas EJ
    New Phytol; 2016 Jun; 210(4):1219-28. PubMed ID: 26991124
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.