These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 29761520)
1. Predicting lysine-malonylation sites of proteins using sequence and predicted structural features. Taherzadeh G; Yang Y; Xu H; Xue Y; Liew AW; Zhou Y J Comput Chem; 2018 Aug; 39(22):1757-1763. PubMed ID: 29761520 [TBL] [Abstract][Full Text] [Related]
2. Mal-Lys: prediction of lysine malonylation sites in proteins integrated sequence-based features with mRMR feature selection. Xu Y; Ding YX; Ding J; Wu LY; Xue Y Sci Rep; 2016 Dec; 6():38318. PubMed ID: 27910954 [TBL] [Abstract][Full Text] [Related]
3. Computational analysis and prediction of lysine malonylation sites by exploiting informative features in an integrative machine-learning framework. Zhang Y; Xie R; Wang J; Leier A; Marquez-Lago TT; Akutsu T; Webb GI; Chou KC; Song J Brief Bioinform; 2019 Nov; 20(6):2185-2199. PubMed ID: 30351377 [TBL] [Abstract][Full Text] [Related]
4. Mal-Prec: computational prediction of protein Malonylation sites via machine learning based feature integration : Malonylation site prediction. Liu X; Wang L; Li J; Hu J; Zhang X BMC Genomics; 2020 Nov; 21(1):812. PubMed ID: 33225896 [TBL] [Abstract][Full Text] [Related]
5. Integration of A Deep Learning Classifier with A Random Forest Approach for Predicting Malonylation Sites. Chen Z; He N; Huang Y; Qin WT; Liu X; Li L Genomics Proteomics Bioinformatics; 2018 Dec; 16(6):451-459. PubMed ID: 30639696 [TBL] [Abstract][Full Text] [Related]
6. Computational prediction of species-specific malonylation sites via enhanced characteristic strategy. Wang LN; Shi SP; Xu HD; Wen PP; Qiu JD Bioinformatics; 2017 May; 33(10):1457-1463. PubMed ID: 28025199 [TBL] [Abstract][Full Text] [Related]
7. Lysine Malonylome May Affect the Central Metabolism and Erythromycin Biosynthesis Pathway in Saccharopolyspora erythraea. Xu JY; Xu Z; Zhou Y; Ye BC J Proteome Res; 2016 May; 15(5):1685-701. PubMed ID: 27090497 [TBL] [Abstract][Full Text] [Related]
8. iDPGK: characterization and identification of lysine phosphoglycerylation sites based on sequence-based features. Huang KY; Hung FY; Kao HJ; Lau HH; Weng SL BMC Bioinformatics; 2020 Dec; 21(1):568. PubMed ID: 33297954 [TBL] [Abstract][Full Text] [Related]
9. Mal-Light: Enhancing Lysine Malonylation Sites Prediction Problem Using Evolutionary-based Features. Ahmad W; Arafat E; Taherzadeh G; Sharma A; Dipta SR; Dehzangi A; Shatabda S IEEE Access; 2020; 8():77888-77902. PubMed ID: 33354488 [TBL] [Abstract][Full Text] [Related]
10. Sequence-based prediction of protein-peptide binding sites using support vector machine. Taherzadeh G; Yang Y; Zhang T; Liew AW; Zhou Y J Comput Chem; 2016 May; 37(13):1223-9. PubMed ID: 26833816 [TBL] [Abstract][Full Text] [Related]
11. Global Profiling of Protein Lysine Malonylation in Escherichia coli Reveals Its Role in Energy Metabolism. Qian L; Nie L; Chen M; Liu P; Zhu J; Zhai L; Tao SC; Cheng Z; Zhao Y; Tan M J Proteome Res; 2016 Jun; 15(6):2060-71. PubMed ID: 27183143 [TBL] [Abstract][Full Text] [Related]
12. SEMal: Accurate protein malonylation site predictor using structural and evolutionary information. Dipta SR; Taherzadeh G; Ahmad MW; Arafat ME; Shatabda S; Dehzangi A Comput Biol Med; 2020 Oct; 125():104022. PubMed ID: 33022522 [TBL] [Abstract][Full Text] [Related]
13. Structure-based prediction of protein- peptide binding regions using Random Forest. Taherzadeh G; Zhou Y; Liew AW; Yang Y Bioinformatics; 2018 Feb; 34(3):477-484. PubMed ID: 29028926 [TBL] [Abstract][Full Text] [Related]
14. SPRINT-Gly: predicting N- and O-linked glycosylation sites of human and mouse proteins by using sequence and predicted structural properties. Taherzadeh G; Dehzangi A; Golchin M; Zhou Y; Campbell MP Bioinformatics; 2019 Oct; 35(20):4140-4146. PubMed ID: 30903686 [TBL] [Abstract][Full Text] [Related]
15. Prediction of Protein Lysine Acylation by Integrating Primary Sequence Information with Multiple Functional Features. Du Y; Zhai Z; Li Y; Lu M; Cai T; Zhou B; Huang L; Wei T; Li T J Proteome Res; 2016 Dec; 15(12):4234-4244. PubMed ID: 27774790 [TBL] [Abstract][Full Text] [Related]
16. Prediction of Lysine Malonylation Sites Based on Pseudo Amino Acid. Xiang Q; Feng K; Liao B; Liu Y; Huang G Comb Chem High Throughput Screen; 2017; 20(7):622-628. PubMed ID: 28292251 [TBL] [Abstract][Full Text] [Related]
17. Systematic analysis of the lysine malonylome in common wheat. Liu J; Wang G; Lin Q; Liang W; Gao Z; Mu P; Li G; Song L BMC Genomics; 2018 Mar; 19(1):209. PubMed ID: 29558883 [TBL] [Abstract][Full Text] [Related]
18. Incorporating hybrid models into lysine malonylation sites prediction on mammalian and plant proteins. Chung CR; Chang YP; Hsu YL; Chen S; Wu LC; Horng JT; Lee TY Sci Rep; 2020 Jun; 10(1):10541. PubMed ID: 32601280 [TBL] [Abstract][Full Text] [Related]
19. Analysis and review of techniques and tools based on machine learning and deep learning for prediction of lysine malonylation sites in protein sequences. Ramazi S; Tabatabaei SAH; Khalili E; Nia AG; Motarjem K Database (Oxford); 2024 Jan; 2024():. PubMed ID: 38245002 [TBL] [Abstract][Full Text] [Related]
20. Accurate prediction of species-specific 2-hydroxyisobutyrylation sites based on machine learning frameworks. Wang YG; Huang SY; Wang LN; Zhou ZY; Qiu JD Anal Biochem; 2020 Aug; 602():113793. PubMed ID: 32473122 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]