These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 29761631)

  • 1. Recent Progress in Some Amorphous Materials for Supercapacitors.
    Li Q; Xu Y; Zheng S; Guo X; Xue H; Pang H
    Small; 2018 Jul; 14(28):e1800426. PubMed ID: 29761631
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metal Phosphides and Phosphates-based Electrodes for Electrochemical Supercapacitors.
    Li X; Elshahawy AM; Guan C; Wang J
    Small; 2017 Oct; 13(39):. PubMed ID: 28834280
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Research Advances of Amorphous Metal Oxides in Electrochemical Energy Storage and Conversion.
    Yan S; Abhilash KP; Tang L; Yang M; Ma Y; Xia Q; Guo Q; Xia H
    Small; 2019 Jan; 15(4):e1804371. PubMed ID: 30548915
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of Copper-Sulfur Compound Electrode Materials in Supercapacitors.
    Lu J; Jiang H; Guo P; Li J; Zhu H; Fan X; Huang L; Sun J; Wang Y
    Molecules; 2024 Feb; 29(5):. PubMed ID: 38474488
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanostructured pseudocapacitive materials decorated 3D graphene foam electrodes for next generation supercapacitors.
    Patil U; Lee SC; Kulkarni S; Sohn JS; Nam MS; Han S; Jun SC
    Nanoscale; 2015 Apr; 7(16):6999-7021. PubMed ID: 25807279
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel Two-Dimensional Porous Materials for Electrochemical Energy Storage: A Minireview.
    Mao L; Zhao X; Wang H; Xu H; Xie L; Zhao C; Chen L
    Chem Rec; 2020 Sep; 20(9):922-935. PubMed ID: 32614148
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct electrochemical growth of amorphous molybdenum sulfide nanosheets on Ni foam for high-performance supercapacitors.
    Shang M; Du C; Huang H; Mao J; Liu P; Song W
    J Colloid Interface Sci; 2018 Dec; 532():24-31. PubMed ID: 30077063
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent Progress in Two-Dimensional Layered Double Hydroxides and Their Derivatives for Supercapacitors.
    Gao X; Wang P; Pan Z; Claverie JP; Wang J
    ChemSusChem; 2020 Mar; 13(6):1226-1254. PubMed ID: 31797566
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent Advances in Porous Carbon Materials for Electrochemical Energy Storage.
    Wang L; Hu X
    Chem Asian J; 2018 Jun; 13(12):1518-1529. PubMed ID: 29667345
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel mesoporous electrode materials for symmetric, asymmetric and hybrid supercapacitors.
    Cherusseri J; Sambath Kumar K; Choudhary N; Nagaiah N; Jung Y; Roy T; Thomas J
    Nanotechnology; 2019 May; 30(20):202001. PubMed ID: 30754027
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-energy asymmetric supercapacitors based on free-standing hierarchical Co-Mo-S nanosheets with enhanced cycling stability.
    Balamurugan J; Li C; Peera SG; Kim NH; Lee JH
    Nanoscale; 2017 Sep; 9(36):13747-13759. PubMed ID: 28884774
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controllable Fabrication of Amorphous Co-Ni Pyrophosphates for Tuning Electrochemical Performance in Supercapacitors.
    Chen C; Zhang N; He Y; Liang B; Ma R; Liu X
    ACS Appl Mater Interfaces; 2016 Sep; 8(35):23114-21. PubMed ID: 27526717
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrospun N-Doped Porous Carbon Nanofibers Incorporated with NiO Nanoparticles as Free-Standing Film Electrodes for High-Performance Supercapacitors and CO
    Li Q; Guo J; Xu D; Guo J; Ou X; Hu Y; Qi H; Yan F
    Small; 2018 Apr; 14(15):e1704203. PubMed ID: 29527803
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxygen- and Nitrogen-Enriched 3D Porous Carbon for Supercapacitors of High Volumetric Capacity.
    Li J; Liu K; Gao X; Yao B; Huo K; Cheng Y; Cheng X; Chen D; Wang B; Sun W; Ding D; Liu M; Huang L
    ACS Appl Mater Interfaces; 2015 Nov; 7(44):24622-8. PubMed ID: 26477268
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metal-Organic Framework-Derived Nanoporous Metal Oxides toward Supercapacitor Applications: Progress and Prospects.
    Salunkhe RR; Kaneti YV; Yamauchi Y
    ACS Nano; 2017 Jun; 11(6):5293-5308. PubMed ID: 28613076
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Popcorn-Derived Porous Carbon Flakes with an Ultrahigh Specific Surface Area for Superior Performance Supercapacitors.
    Hou J; Jiang K; Wei R; Tahir M; Wu X; Shen M; Wang X; Cao C
    ACS Appl Mater Interfaces; 2017 Sep; 9(36):30626-30634. PubMed ID: 28819968
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Porous nanoarchitectures of spinel-type transition metal oxides for electrochemical energy storage systems.
    Park MS; Kim J; Kim KJ; Lee JW; Kim JH; Yamauchi Y
    Phys Chem Chem Phys; 2015 Dec; 17(46):30963-77. PubMed ID: 26549729
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amorphous Mixed-Valence Vanadium Oxide/Exfoliated Carbon Cloth Structure Shows a Record High Cycling Stability.
    Song Y; Liu TY; Yao B; Kou TY; Feng DY; Liu XX; Li Y
    Small; 2017 Apr; 13(16):. PubMed ID: 28160416
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-Templated Formation of Hollow Structures for Electrochemical Energy Applications.
    Yu L; Wu HB; Lou XW
    Acc Chem Res; 2017 Feb; 50(2):293-301. PubMed ID: 28128931
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Graphene/transition metal dichalcogenides hybrid supercapacitor electrode: status, challenges, and perspectives.
    Seman RNAR; Azam MA; Ani MH
    Nanotechnology; 2018 Dec; 29(50):502001. PubMed ID: 30248022
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.