BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 29761785)

  • 1. Discovery and characterization of a prevalent human gut bacterial enzyme sufficient for the inactivation of a family of plant toxins.
    Koppel N; Bisanz JE; Pandelia ME; Turnbaugh PJ; Balskus EP
    Elife; 2018 May; 7():. PubMed ID: 29761785
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanistic insight into digoxin inactivation by Eggerthella lenta augments our understanding of its pharmacokinetics.
    Haiser HJ; Seim KL; Balskus EP; Turnbaugh PJ
    Gut Microbes; 2014; 5(2):233-8. PubMed ID: 24637603
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanistic and structural insight into promiscuity based metabolism of cardiac drug digoxin by gut microbial enzyme.
    Kumar K; Jaiswal SK; Dhoke GV; Srivastava GN; Sharma AK; Sharma VK
    J Cell Biochem; 2018 Jul; 119(7):5287-5296. PubMed ID: 29274283
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting and manipulating cardiac drug inactivation by the human gut bacterium Eggerthella lenta.
    Haiser HJ; Gootenberg DB; Chatman K; Sirasani G; Balskus EP; Turnbaugh PJ
    Science; 2013 Jul; 341(6143):295-8. PubMed ID: 23869020
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intestinal microbiome and digoxin inactivation: meal plan for digoxin users?
    Lu L; Wu Y; Zuo L; Luo X; Large PJ
    World J Microbiol Biotechnol; 2014 Mar; 30(3):791-9. PubMed ID: 24105082
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A widely distributed metalloenzyme class enables gut microbial metabolism of host- and diet-derived catechols.
    Maini Rekdal V; Nol Bernadino P; Luescher MU; Kiamehr S; Le C; Bisanz JE; Turnbaugh PJ; Bess EN; Balskus EP
    Elife; 2020 Feb; 9():. PubMed ID: 32067637
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimization of an in vitro gut microbiome biotransformation platform with chlorogenic acid as model compound: From fecal sample to biotransformation product identification.
    Mortelé O; Iturrospe E; Breynaert A; Verdickt E; Xavier BB; Lammens C; Malhotra-Kumar S; Jorens PG; Pieters L; van Nuijs ALN; Hermans N
    J Pharm Biomed Anal; 2019 Oct; 175():112768. PubMed ID: 31398630
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic basis for the cooperative bioactivation of plant lignans by Eggerthella lenta and other human gut bacteria.
    Bess EN; Bisanz JE; Yarza F; Bustion A; Rich BE; Li X; Kitamura S; Waligurski E; Ang QY; Alba DL; Spanogiannopoulos P; Nayfach S; Koliwad SK; Wolan DW; Franke AA; Turnbaugh PJ
    Nat Microbiol; 2020 Jan; 5(1):56-66. PubMed ID: 31686027
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Xenobiotic Metabolism and Gut Microbiomes.
    Das A; Srinivasan M; Ghosh TS; Mande SS
    PLoS One; 2016; 11(10):e0163099. PubMed ID: 27695034
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemical reaction vector embeddings: towards predicting drug metabolism in the human gut microbiome.
    Mallory EK; Acharya A; Rensi SE; Turnbaugh PJ; Bright RA; Altman RB
    Pac Symp Biocomput; 2018; 23():56-67. PubMed ID: 29218869
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical transformation of xenobiotics by the human gut microbiota.
    Koppel N; Maini Rekdal V; Balskus EP
    Science; 2017 Jun; 356(6344):. PubMed ID: 28642381
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GutBug: A Tool for Prediction of Human Gut Bacteria Mediated Biotransformation of Biotic and Xenobiotic Molecules Using Machine Learning.
    Malwe AS; Srivastava GN; Sharma VK
    J Mol Biol; 2023 Jul; 435(14):168056. PubMed ID: 37356904
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel approach for the prediction of species-specific biotransformation of xenobiotic/drug molecules by the human gut microbiota.
    Sharma AK; Jaiswal SK; Chaudhary N; Sharma VK
    Sci Rep; 2017 Aug; 7(1):9751. PubMed ID: 28852076
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discovery of an ene-reductase for initiating flavone and flavonol catabolism in gut bacteria.
    Yang G; Hong S; Yang P; Sun Y; Wang Y; Zhang P; Jiang W; Gu Y
    Nat Commun; 2021 Feb; 12(1):790. PubMed ID: 33542233
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anaerobic 4-hydroxyproline utilization: Discovery of a new glycyl radical enzyme in the human gut microbiome uncovers a widespread microbial metabolic activity.
    Huang YY; Martínez-Del Campo A; Balskus EP
    Gut Microbes; 2018; 9(5):437-451. PubMed ID: 29405826
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of gut microbiota in fetal methylmercury exposure: Insights from a pilot study.
    Rothenberg SE; Keiser S; Ajami NJ; Wong MC; Gesell J; Petrosino JF; Johs A
    Toxicol Lett; 2016 Feb; 242():60-67. PubMed ID: 26626101
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Gut Microbiota Impact Cancer Etiology through "Phase IV Metabolism" of Xenobiotics and Endobiotics.
    Ervin SM; Redinbo MR
    Cancer Prev Res (Phila); 2020 Aug; 13(8):635-642. PubMed ID: 32611614
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolism of hydrogen gases and bile acids in the gut microbiome.
    Hylemon PB; Harris SC; Ridlon JM
    FEBS Lett; 2018 Jun; 592(12):2070-2082. PubMed ID: 29683480
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Drug Metabolism by the Host and Gut Microbiota: A Partnership or Rivalry?
    Swanson HI
    Drug Metab Dispos; 2015 Oct; 43(10):1499-504. PubMed ID: 26261284
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inactivation of digoxin by Eubacterium lentum, an anaerobe of the human gut flora.
    Dobkin JF; Saha JR; Butler VP; Neu HC; Lindenbaum J
    Trans Assoc Am Physicians; 1982; 95():22-9. PubMed ID: 7182977
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.