BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 29761842)

  • 1. Design and Performance Evaluation of Real-time Endovascular Interventional Surgical Robotic System with High Accuracy.
    Wang K; Chen B; Lu Q; Li H; Liu M; Shen Y; Xu Z
    Int J Med Robot; 2018 Oct; 14(5):e1915. PubMed ID: 29761842
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel noncontact detection method of surgeon's operation for a master-slave endovascular surgery robot.
    Zhao Y; Xing H; Guo S; Wang Y; Cui J; Ma Y; Liu Y; Liu X; Feng J; Li Y
    Med Biol Eng Comput; 2020 Apr; 58(4):871-885. PubMed ID: 32077011
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A CNN-based prototype method of unstructured surgical state perception and navigation for an endovascular surgery robot.
    Zhao Y; Guo S; Wang Y; Cui J; Ma Y; Zeng Y; Liu X; Jiang Y; Li Y; Shi L; Xiao N
    Med Biol Eng Comput; 2019 Sep; 57(9):1875-1887. PubMed ID: 31222531
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel robotic system for vascular intervention: principles, performances, and applications.
    Shen H; Wang C; Xie L; Zhou S; Gu L; Xie H
    Int J Comput Assist Radiol Surg; 2019 Apr; 14(4):671-683. PubMed ID: 30739274
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preliminary study for motion scaling based control in minimally invasive vascular interventional robot.
    Feng ZQ; Bian GB; Xie XL; Hao JL; Gao ZJ; Hou ZG
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():4898-901. PubMed ID: 26737390
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Novel Universal Endovascular Robot for Peripheral Arterial Stent-Assisted Angioplasty: Initial Experimental Results.
    Lu Q; Shen Y; Xia S; Chen B; Wang K
    Vasc Endovascular Surg; 2020 Oct; 54(7):598-604. PubMed ID: 32662355
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study on real-time force feedback for a master-slave interventional surgical robotic system.
    Guo S; Wang Y; Xiao N; Li Y; Jiang Y
    Biomed Microdevices; 2018 Apr; 20(2):37. PubMed ID: 29654553
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intraocular robotic interventional surgical system (IRISS): Mechanical design, evaluation, and master-slave manipulation.
    Wilson JT; Gerber MJ; Prince SW; Chen CW; Schwartz SD; Hubschman JP; Tsao TC
    Int J Med Robot; 2018 Feb; 14(1):. PubMed ID: 28762253
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An assembly-type master-slave catheter and guidewire driving system for vascular intervention.
    Cha HJ; Yi BJ; Won JY
    Proc Inst Mech Eng H; 2017 Jan; 231(1):69-79. PubMed ID: 28097937
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Control design and implementation of a novel master-slave surgery robot system, MicroHand A.
    Sang H; Wang S; Li J; He C; Zhang L; Wang X
    Int J Med Robot; 2011 Sep; 7(3):334-47. PubMed ID: 21732498
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electromagnetic tracking of flexible robotic catheters enables "assisted navigation" and brings automation to endovascular navigation in an in vitro study.
    Schwein A; Kramer B; Chinnadurai P; Virmani N; Walker S; O'Malley M; Lumsden AB; Bismuth J
    J Vasc Surg; 2018 Apr; 67(4):1274-1281. PubMed ID: 28583735
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A linear stepping endovascular intervention robot with variable stiffness and force sensing.
    He C; Wang S; Zuo S
    Int J Comput Assist Radiol Surg; 2018 May; 13(5):671-682. PubMed ID: 29520525
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel remote-controlled robotic system for cerebrovascular intervention.
    Shen H; Wang C; Xie L; Zhou S; Gu L; Xie H
    Int J Med Robot; 2018 Dec; 14(6):e1943. PubMed ID: 30062697
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Operating force information on-line acquisition of a novel slave manipulator for vascular interventional surgery.
    Zhao Y; Guo S; Xiao N; Wang Y; Li Y; Jiang Y
    Biomed Microdevices; 2018 Apr; 20(2):33. PubMed ID: 29610988
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Performance evaluation of a robot-assisted catheter operating system with haptic feedback.
    Song Y; Guo S; Yin X; Zhang L; Hirata H; Ishihara H; Tamiya T
    Biomed Microdevices; 2018 Jun; 20(2):50. PubMed ID: 29926195
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design and performance evaluation of a master controller for endovascular catheterization.
    Guo J; Guo S; Tamiya T; Hirata H; Ishihara H
    Int J Comput Assist Radiol Surg; 2016 Jan; 11(1):119-31. PubMed ID: 26067289
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flexible robotics with electromagnetic tracking improves safety and efficiency during in vitro endovascular navigation.
    Schwein A; Kramer B; Chinnadurai P; Walker S; O'Malley M; Lumsden A; Bismuth J
    J Vasc Surg; 2017 Feb; 65(2):530-537. PubMed ID: 26994950
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of robotic endovascular catheters in fenestrated stent grafting.
    Riga CV; Cheshire NJ; Hamady MS; Bicknell CD
    J Vasc Surg; 2010 Apr; 51(4):810-9; discussion 819-20. PubMed ID: 20347674
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Remote-controlled vascular interventional surgery robot.
    Wang T; Zhang D; Da L
    Int J Med Robot; 2010 Jun; 6(2):194-201. PubMed ID: 20235338
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Feasibility and safety of renal and visceral target vessel cannulation using robotically steerable catheters during complex endovascular aortic procedures.
    Cochennec F; Kobeiter H; Gohel M; Marzelle J; Desgranges P; Allaire E; Becquemin JP
    J Endovasc Ther; 2015 Apr; 22(2):187-93. PubMed ID: 25809359
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.