BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 29761864)

  • 21. Induced mutation and epigenetics modification in plants for crop improvement by targeting CRISPR/Cas9 technology.
    Khan MHU; Khan SU; Muhammad A; Hu L; Yang Y; Fan C
    J Cell Physiol; 2018 Jun; 233(6):4578-4594. PubMed ID: 29194606
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation.
    Zhang H; Zhang J; Wei P; Zhang B; Gou F; Feng Z; Mao Y; Yang L; Zhang H; Xu N; Zhu JK
    Plant Biotechnol J; 2014 Aug; 12(6):797-807. PubMed ID: 24854982
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effective identification of CRISPR/Cas9-induced and naturally occurred mutations in rice using a multiplex ligation-dependent probe amplification-based method.
    Biswas S; Li R; Hong J; Zhao X; Yuan Z; Zhang D; Shi J
    Theor Appl Genet; 2020 Aug; 133(8):2323-2334. PubMed ID: 32405769
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Arabidopsis glutamate:glyoxylate aminotransferase 1 (Ler) mutants generated by CRISPR/Cas9 and their characteristics.
    Liang Y; Zeng X; Peng X; Hou X
    Transgenic Res; 2018 Feb; 27(1):61-74. PubMed ID: 29392632
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion.
    Zong Y; Wang Y; Li C; Zhang R; Chen K; Ran Y; Qiu JL; Wang D; Gao C
    Nat Biotechnol; 2017 May; 35(5):438-440. PubMed ID: 28244994
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Efficiency and Inheritance of Targeted Mutagenesis in Maize Using CRISPR-Cas9.
    Zhu J; Song N; Sun S; Yang W; Zhao H; Song W; Lai J
    J Genet Genomics; 2016 Jan; 43(1):25-36. PubMed ID: 26842991
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A CRISPR/Cas9 toolkit for multiplex genome editing in plants.
    Xing HL; Dong L; Wang ZP; Zhang HY; Han CY; Liu B; Wang XC; Chen QJ
    BMC Plant Biol; 2014 Nov; 14():327. PubMed ID: 25432517
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system.
    Liang Z; Zhang K; Chen K; Gao C
    J Genet Genomics; 2014 Feb; 41(2):63-8. PubMed ID: 24576457
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An experimental protocol for teaching CRISPR/Cas9 in a post-graduate plant laboratory course: An analysis of mutant-edited plants without sequencing.
    Mayta ML; Dotto M; Orellano EG; Krapp AR
    Biochem Mol Biol Educ; 2022 Sep; 50(5):537-546. PubMed ID: 35894125
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Single-Step qPCR and dPCR Detection of Diverse CRISPR-Cas9 Gene Editing Events
    Falabella M; Sun L; Barr J; Pena AZ; Kershaw EE; Gingras S; Goncharova EA; Kaufman BA
    G3 (Bethesda); 2017 Oct; 7(10):3533-3542. PubMed ID: 28860183
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A CRISPR/Cas12a-Mediated Sensitive DNA Detection System for Gene-Edited Rice.
    Wang Z; Huang C; Wei S; Zhu P; Li Y; Fu W; Zhang Y
    J AOAC Int; 2023 May; 106(3):558-567. PubMed ID: 36847422
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Manipulating the Biosynthesis of Bioactive Compound Alkaloids for Next-Generation Metabolic Engineering in Opium Poppy Using CRISPR-Cas 9 Genome Editing Technology.
    Alagoz Y; Gurkok T; Zhang B; Unver T
    Sci Rep; 2016 Aug; 6():30910. PubMed ID: 27483984
    [TBL] [Abstract][Full Text] [Related]  

  • 33. CRISPR/Cas9-Mediated Multiplex Genome Editing of the
    Sun Q; Lin L; Liu D; Wu D; Fang Y; Wu J; Wang Y
    Int J Mol Sci; 2018 Sep; 19(9):. PubMed ID: 30208656
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A simple and efficient method for CRISPR/Cas9-induced mutant screening.
    Hua Y; Wang C; Huang J; Wang K
    J Genet Genomics; 2017 Apr; 44(4):207-213. PubMed ID: 28416245
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Programmed Self-Elimination of the CRISPR/Cas9 Construct Greatly Accelerates the Isolation of Edited and Transgene-Free Rice Plants.
    He Y; Zhu M; Wang L; Wu J; Wang Q; Wang R; Zhao Y
    Mol Plant; 2018 Sep; 11(9):1210-1213. PubMed ID: 29857174
    [No Abstract]   [Full Text] [Related]  

  • 36. CRISPR-S: an active interference element for a rapid and inexpensive selection of genome-edited, transgene-free rice plants.
    Lu HP; Liu SM; Xu SL; Chen WY; Zhou X; Tan YY; Huang JZ; Shu QY
    Plant Biotechnol J; 2017 Nov; 15(11):1371-1373. PubMed ID: 28688132
    [No Abstract]   [Full Text] [Related]  

  • 37. The CRISPR/Cas9 system and its applications in crop genome editing.
    Bao A; Burritt DJ; Chen H; Zhou X; Cao D; Tran LP
    Crit Rev Biotechnol; 2019 May; 39(3):321-336. PubMed ID: 30646772
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Proxies of CRISPR/Cas9 Activity To Aid in the Identification of Mutagenized Arabidopsis Plants.
    Li R; Vavrik C; Danna CH
    G3 (Bethesda); 2020 Jun; 10(6):2033-2042. PubMed ID: 32291290
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cutting Edge Genetics: CRISPR/Cas9 Editing of Plant Genomes.
    Soyars CL; Peterson BA; Burr CA; Nimchuk ZL
    Plant Cell Physiol; 2018 Aug; 59(8):1608-1620. PubMed ID: 29912402
    [TBL] [Abstract][Full Text] [Related]  

  • 40. CRISPR/Cas9-mediated targeted mutagenesis of GmSPL9 genes alters plant architecture in soybean.
    Bao A; Chen H; Chen L; Chen S; Hao Q; Guo W; Qiu D; Shan Z; Yang Z; Yuan S; Zhang C; Zhang X; Liu B; Kong F; Li X; Zhou X; Tran LP; Cao D
    BMC Plant Biol; 2019 Apr; 19(1):131. PubMed ID: 30961525
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.