BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 29761905)

  • 1. Stress-related salivary proteins affect the production of volatile sulfur compounds by oral bacteria.
    de Lima PO; Nani BD; Almeida B; Marcondes FK; Groppo FC; de Moraes ABA; Franz-Montan M; Cogo-Müller K
    Oral Dis; 2018 Oct; 24(7):1358-1366. PubMed ID: 29761905
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of academic stress on the levels of oral volatile sulfur compounds, halitosis-related bacteria and stress biomarkers of healthy female undergraduate students.
    De Lima PO; Nani BD; Rolim GS; Groppo FC; Franz-Montan M; Alves De Moraes AB; Cogo-Müller K; Marcondes FK
    J Breath Res; 2020 Jul; 14(3):036005. PubMed ID: 32428892
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in salivary microbiota increase volatile sulfur compounds production in healthy male subjects with academic-related chronic stress.
    Nani BD; Lima PO; Marcondes FK; Groppo FC; Rolim GS; Moraes AB; Cogo-Müller K; Franz-Montan M
    PLoS One; 2017; 12(3):e0173686. PubMed ID: 28319129
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro growth characteristics and volatile sulfur compound production of Solobacterium moorei.
    Stephen AS; Naughton DP; Pizzey RL; Bradshaw DJ; Burnett GR
    Anaerobe; 2014 Apr; 26():53-7. PubMed ID: 24487184
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of volatile sulfur compound production by Solobacterium moorei.
    Tanabe S; Grenier D
    Arch Oral Biol; 2012 Dec; 57(12):1639-43. PubMed ID: 23088790
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inactivating effects of the lactoperoxidase system on bacterial lyases involved in oral malodour production.
    Nakano M; Shin K; Wakabayashi H; Yamauchi K; Abe F; Hironaka S
    J Med Microbiol; 2015 Oct; 64(10):1244-1252. PubMed ID: 26242770
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Halitosis vaccines targeting FomA, a biofilm-bridging protein of fusobacteria nucleatum.
    Liu PF; Huang IF; Shu CW; Huang CM
    Curr Mol Med; 2013 Sep; 13(8):1358-67. PubMed ID: 23865430
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Myrsinoic acid B inhibits the production of hydrogen sulfide by periodontal pathogens in vitro.
    Ito S; Shimura S; Tanaka T; Yaegaki K
    J Breath Res; 2010 Jun; 4(2):026005. PubMed ID: 21383473
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrogen sulfide production from cysteine and homocysteine by periodontal and oral bacteria.
    Yoshida A; Yoshimura M; Ohara N; Yoshimura S; Nagashima S; Takehara T; Nakayama K
    J Periodontol; 2009 Nov; 80(11):1845-51. PubMed ID: 19905954
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cetylpyridinium chloride suppresses gene expression associated with halitosis.
    Liu J; Ling JQ; Wu CD
    Arch Oral Biol; 2013 Nov; 58(11):1686-91. PubMed ID: 24112735
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oral Fusobacterium nucleatum subsp. polymorphum binds to human salivary α-amylase.
    Zulfiqar M; Yamaguchi T; Sato S; Oho T
    Mol Oral Microbiol; 2013 Dec; 28(6):425-34. PubMed ID: 23906425
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel reuterin-related compounds suppress odour by periodontopathic bacteria.
    Fujiwara N; Murakami K; Nakao M; Toguchi M; Yumoto H; Amoh T; Hirota K; Matsuo T; Sano S; Ozaki K; Miyake Y
    Oral Dis; 2017 May; 23(4):492-497. PubMed ID: 28083982
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Competition for peptides and amino acids among periodontal bacteria.
    Tang-Larsen J; Claesson R; Edlund MB; Carlsson J
    J Periodontal Res; 1995 Nov; 30(6):390-5. PubMed ID: 8544102
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interspecies metabolite transfer fuels the methionine metabolism of
    Hara T; Sakanaka A; Lamont RJ; Amano A; Kuboniwa M
    mSystems; 2024 Feb; 9(2):e0076423. PubMed ID: 38289043
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production of hydrogen sulfide by two enzymes associated with biosynthesis of homocysteine and lanthionine in Fusobacterium nucleatum subsp. nucleatum ATCC 25586.
    Yoshida Y; Ito S; Kamo M; Kezuka Y; Tamura H; Kunimatsu K; Kato H
    Microbiology (Reading); 2010 Jul; 156(Pt 7):2260-2269. PubMed ID: 20413556
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low salivary flow and volatile sulfur compounds in mouth air.
    Koshimune S; Awano S; Gohara K; Kurihara E; Ansai T; Takehara T
    Oral Surg Oral Med Oral Pathol Oral Radiol Endod; 2003 Jul; 96(1):38-41. PubMed ID: 12847442
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Induction and inhibition of oral malodor.
    Suzuki N; Yoneda M; Takeshita T; Hirofuji T; Hanioka T
    Mol Oral Microbiol; 2019 Jun; 34(3):85-96. PubMed ID: 30927516
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of cinnamon (Cinnamomum verum) bark essential oil on the halitosis-associated bacterium Solobacterium moorei and in vitro cytotoxicity.
    LeBel G; Haas B; Adam AA; Veilleux MP; Lagha AB; Grenier D
    Arch Oral Biol; 2017 Nov; 83():97-104. PubMed ID: 28743086
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of an L-methionine γ-lyase involved in the production of hydrogen sulfide from L-cysteine in Fusobacterium nucleatum subsp. nucleatum ATCC 25586.
    Suwabe K; Yoshida Y; Nagano K; Yoshimura F
    Microbiology (Reading); 2011 Oct; 157(Pt 10):2992-3000. PubMed ID: 21798982
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of malodorous gas formation by oral bacteria with cetylpyridinium and zinc chloride.
    Kang JH; Kim DJ; Choi BK; Park JW
    Arch Oral Biol; 2017 Dec; 84():133-138. PubMed ID: 28987726
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.