These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 29762082)

  • 21. Effects of cell morphology and attachment to a surface on the hydrodynamic performance of unicellular choanoflagellates.
    Nguyen H; Koehl MAR; Oakes C; Bustamante G; Fauci L
    J R Soc Interface; 2019 Jan; 16(150):20180736. PubMed ID: 30958167
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mesoscale simulations of hydrodynamic squirmer interactions.
    Götze IO; Gompper G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Oct; 82(4 Pt 1):041921. PubMed ID: 21230327
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Derivation of a hydrodynamic theory for mesoscale dynamics in microswimmer suspensions.
    Reinken H; Klapp SHL; Bär M; Heidenreich S
    Phys Rev E; 2018 Feb; 97(2-1):022613. PubMed ID: 29548118
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comprehensive analysis of efficient swimming using articulated legs fringed with flexible appendages inspired by a water beetle.
    Kwak B; Lee D; Bae J
    Bioinspir Biomim; 2019 Sep; 14(6):066003. PubMed ID: 31362269
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of interfilament hydrodynamic interaction on swimming performance of two-filament microswimmers.
    Singh TS; Singh P; Yadava RDS
    Soft Matter; 2018 Sep; 14(37):7748-7758. PubMed ID: 30206610
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nonlinear Parametric Excitation Effect Induces Stability Transitions in Swimming Direction of Flexible Superparamagnetic Microswimmers.
    Harduf Y; Jin D; Or Y; Zhang L
    Soft Robot; 2018 Aug; 5(4):389-398. PubMed ID: 29620965
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microswimmer Propulsion by Two Steadily Rotating Helical Flagella.
    Shum H
    Micromachines (Basel); 2019 Jan; 10(1):. PubMed ID: 30669288
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Instabilities of a rotating helical rod in a viscous fluid.
    Park Y; Kim Y; Ko W; Lim S
    Phys Rev E; 2017 Feb; 95(2-1):022410. PubMed ID: 28297972
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modelling the mechanics and hydrodynamics of swimming E. coli.
    Hu J; Yang M; Gompper G; Winkler RG
    Soft Matter; 2015 Oct; 11(40):7867-76. PubMed ID: 26256240
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cell-body rocking is a dominant mechanism for flagellar synchronization in a swimming alga.
    Geyer VF; Jülicher F; Howard J; Friedrich BM
    Proc Natl Acad Sci U S A; 2013 Nov; 110(45):18058-63. PubMed ID: 24145440
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Controllable switching between planar and helical flagellar swimming of a soft robotic sperm.
    Khalil ISM; Tabak AF; Abou Seif M; Klingner A; Sitti M
    PLoS One; 2018; 13(11):e0206456. PubMed ID: 30388132
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The Hydrodynamics of Jellyfish Swimming.
    Costello JH; Colin SP; Dabiri JO; Gemmell BJ; Lucas KN; Sutherland KR
    Ann Rev Mar Sci; 2021 Jan; 13():375-396. PubMed ID: 32600216
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Acoustic actuation of bioinspired microswimmers.
    Kaynak M; Ozcelik A; Nourhani A; Lammert PE; Crespi VH; Huang TJ
    Lab Chip; 2017 Jan; 17(3):395-400. PubMed ID: 27991641
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hydrodynamic analysis of flagellated bacteria swimming in corners of rectangular channels.
    Shum H; Gaffney EA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):063016. PubMed ID: 26764813
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Force-free swimming of a model helical flagellum in viscoelastic fluids.
    Liu B; Powers TR; Breuer KS
    Proc Natl Acad Sci U S A; 2011 Dec; 108(49):19516-20. PubMed ID: 22106263
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A bio-robotic platform for integrating internal and external mechanics during muscle-powered swimming.
    Richards CT; Clemente CJ
    Bioinspir Biomim; 2012 Mar; 7(1):016010. PubMed ID: 22345392
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hydrodynamics of helical-shaped bacterial motility.
    Wada H; Netz RR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 1):021921. PubMed ID: 19792165
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhanced low-Reynolds-number propulsion in heterogeneous viscous environments.
    Leshansky AM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Nov; 80(5 Pt 1):051911. PubMed ID: 20365010
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Unsteady hydrodynamic forces acting on a robotic hand and its flow field.
    Takagi H; Nakashima M; Ozaki T; Matsuuchi K
    J Biomech; 2013 Jul; 46(11):1825-32. PubMed ID: 23764175
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhancing Swimming Performance by Optimizing Structure of Helical Swimmers.
    Miao J; Li X; Liang B; Wang J; Xu X
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33445589
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.