These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 29762125)

  • 1. Anomalous mobility of a driven active particle in a steady laminar flow.
    Cecconi F; Puglisi A; Sarracino A; Vulpiani A
    J Phys Condens Matter; 2018 Jul; 30(26):264002. PubMed ID: 29762125
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anomalous force-velocity relation of driven inertial tracers in steady laminar flows.
    Cecconi F; Puglisi A; Sarracino A; Vulpiani A
    Eur Phys J E Soft Matter; 2017 Sep; 40(9):81. PubMed ID: 28942558
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonlinear Response of Inertial Tracers in Steady Laminar Flows: Differential and Absolute Negative Mobility.
    Sarracino A; Cecconi F; Puglisi A; Vulpiani A
    Phys Rev Lett; 2016 Oct; 117(17):174501. PubMed ID: 27824440
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Negative mobility induced by colored thermal fluctuations.
    Kostur M; Luczka J; Hänggi P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Nov; 80(5 Pt 1):051121. PubMed ID: 20364961
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Giant negative mobility of inertial particles caused by the periodic potential in steady laminar flows.
    Ai BQ; Zhu WJ; He YF; Zhong WR
    J Chem Phys; 2018 Oct; 149(16):164903. PubMed ID: 30384762
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Absolute Negative Mobility of an Active Tracer in a Crowded Environment.
    Rizkallah P; Sarracino A; Bénichou O; Illien P
    Phys Rev Lett; 2023 May; 130(21):218201. PubMed ID: 37295085
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spontaneous rectification and absolute negative mobility of inertial Brownian particles induced by Gaussian potentials in steady laminar flows.
    Wu JC; An M; Ma WG
    Soft Matter; 2019 Sep; 15(36):7187-7194. PubMed ID: 31464332
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards the prediction of flow-induced shear stress distributions experienced by breast cancer cells in the lymphatics.
    Morley ST; Newport DT; Walsh MT
    Biomech Model Mechanobiol; 2017 Dec; 16(6):2051-2062. PubMed ID: 28741084
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diffusion properties of self-propelled particles in cellular flows.
    Caprini L; Cecconi F; Puglisi A; Sarracino A
    Soft Matter; 2020 Jun; 16(23):5431-5438. PubMed ID: 32469036
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shear strength of wet granular materials: Macroscopic cohesion and effective stress : Discrete numerical simulations, confronted to experimental measurements.
    Badetti M; Fall A; Chevoir F; Roux JN
    Eur Phys J E Soft Matter; 2018 May; 41(5):68. PubMed ID: 29802504
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Negative velocity fluctuations and non-equilibrium fluctuation relation for a driven high critical current vortex state.
    Bag B; Shaw G; Banerjee SS; Majumdar S; Sood AK; Grover AK
    Sci Rep; 2017 Jul; 7(1):5531. PubMed ID: 28717176
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Langevin based turbulence model and its relationship with Kappa distributions.
    Gallo-Méndez I; Moya PS
    Sci Rep; 2022 Feb; 12(1):2136. PubMed ID: 35136141
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elastic behavior of a red blood cell with the membrane's nonuniform natural state: equilibrium shape, motion transition under shear flow, and elongation during tank-treading motion.
    Tsubota K; Wada S; Liu H
    Biomech Model Mechanobiol; 2014 Aug; 13(4):735-46. PubMed ID: 24104211
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Persistence of uphill anomalous transport in inhomogeneous media.
    Mulhern C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):022906. PubMed ID: 24032900
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonlinear response and emerging nonequilibrium microstructures for biased diffusion in confined crowded environments.
    Bénichou O; Illien P; Oshanin G; Sarracino A; Voituriez R
    Phys Rev E; 2016 Mar; 93(3):032128. PubMed ID: 27078313
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Absolute negative mobility of active polymer chains in steady laminar flows.
    Wu JC; Lin FJ; Ai BQ
    Soft Matter; 2022 Feb; 18(6):1194-1200. PubMed ID: 35037681
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonlinear active micro-rheology in a glass-forming soft-sphere mixture.
    Winter D; Horbach J
    J Chem Phys; 2013 Mar; 138(12):12A512. PubMed ID: 23556763
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrodynamic interaction of a self-propelling particle with a wall : Comparison between an active Janus particle and a squirmer model.
    Shen Z; Würger A; Lintuvuori JS
    Eur Phys J E Soft Matter; 2018 Mar; 41(3):39. PubMed ID: 29594924
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Underdamped, anomalous kinetics in double-well potentials.
    Capała K; Dybiec B
    Phys Rev E; 2020 Nov; 102(5-1):052123. PubMed ID: 33327158
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microscopic theory for negative differential mobility in crowded environments.
    Bénichou O; Illien P; Oshanin G; Sarracino A; Voituriez R
    Phys Rev Lett; 2014 Dec; 113(26):268002. PubMed ID: 25615388
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.