BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 29762131)

  • 1. Two dimensional self-assembly zinc porphyrin and zinc phthalocyanine heterojunctions with record high power conversion efficiencies.
    Yu J; Jiang Z; Hao Y; Zhu Q; Zhao M; Jiang X; Zhao J
    J Phys Condens Matter; 2018 Jun; 30(25):25LT02. PubMed ID: 29762131
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrafast Charge Transfer and Enhanced Absorption in MoS
    Petoukhoff CE; Krishna MB; Voiry D; Bozkurt I; Deckoff-Jones S; Chhowalla M; O'Carroll DM; Dani KM
    ACS Nano; 2016 Nov; 10(11):9899-9908. PubMed ID: 27934091
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chlorophyll-Based Organic-Inorganic Heterojunction Solar Cells.
    Li Y; Zhao W; Li M; Chen G; Wang XF; Fu X; Kitao O; Tamiaki H; Sakai K; Ikeuchi T; Sasaki SI
    Chemistry; 2017 Aug; 23(45):10886-10892. PubMed ID: 28577321
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical solar-to-electrical energy-conversion efficiencies of perylene-porphyrin light-harvesting arrays.
    Hasselman GM; Watson DF; Stromberg JR; Bocian DF; Holten D; Lindsey JS; Meyer GJ
    J Phys Chem B; 2006 Dec; 110(50):25430-40. PubMed ID: 17165990
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Large pi-aromatic molecules as potential sensitizers for highly efficient dye-sensitized solar cells.
    Imahori H; Umeyama T; Ito S
    Acc Chem Res; 2009 Nov; 42(11):1809-18. PubMed ID: 19408942
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering graphene and TMDs based van der Waals heterostructures for photovoltaic and photoelectrochemical solar energy conversion.
    Li C; Cao Q; Wang F; Xiao Y; Li Y; Delaunay JJ; Zhu H
    Chem Soc Rev; 2018 Jul; 47(13):4981-5037. PubMed ID: 29736528
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Size-Tuning of WSe
    Kakavelakis G; Del Rio Castillo AE; Pellegrini V; Ansaldo A; Tzourmpakis P; Brescia R; Prato M; Stratakis E; Kymakis E; Bonaccorso F
    ACS Nano; 2017 Apr; 11(4):3517-3531. PubMed ID: 28240547
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heterojunction modification for highly efficient organic-inorganic perovskite solar cells.
    Wojciechowski K; Stranks SD; Abate A; Sadoughi G; Sadhanala A; Kopidakis N; Rumbles G; Li CZ; Friend RH; Jen AK; Snaith HJ
    ACS Nano; 2014 Dec; 8(12):12701-9. PubMed ID: 25415931
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly efficient heterojunction solar cells enabled by edge-modified tellurene nanoribbons.
    Gao Y; Wu K; Hu W; Yang J
    Phys Chem Chem Phys; 2020 Dec; 22(48):28414-28422. PubMed ID: 33305303
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent progress in porphyrin- and phthalocyanine-containing perovskite solar cells.
    Matsuo Y; Ogumi K; Jeon I; Wang H; Nakagawa T
    RSC Adv; 2020 Sep; 10(54):32678-32689. PubMed ID: 35516522
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular bulk heterojunctions: an emerging approach to organic solar cells.
    Roncali J
    Acc Chem Res; 2009 Nov; 42(11):1719-30. PubMed ID: 19580313
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Near-Infrared-Absorbing Metal-Free Organic, Porphyrin, and Phthalocyanine Sensitizers for Panchromatic Dye-Sensitized Solar Cells.
    Brogdon P; Cheema H; Delcamp JH
    ChemSusChem; 2018 Jan; 11(1):86-103. PubMed ID: 28926685
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solution-processed organic solar cells from dye molecules: an investigation of diketopyrrolopyrrole:vinazene heterojunctions.
    Walker B; Han X; Kim C; Sellinger A; Nguyen TQ
    ACS Appl Mater Interfaces; 2012 Jan; 4(1):244-50. PubMed ID: 22136108
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strategies for increasing the efficiency of heterojunction organic solar cells: material selection and device architecture.
    Heremans P; Cheyns D; Rand BP
    Acc Chem Res; 2009 Nov; 42(11):1740-7. PubMed ID: 19751055
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-Performance Polymer Solar Cells with Zinc Sulfide-Phenanthroline Derivatives as the Hybrid Cathode Interlayers.
    Wu Y; Liu X; Li X; Zhang W; Wang HQ; Fang J
    ACS Appl Mater Interfaces; 2016 Feb; 8(4):2688-93. PubMed ID: 26757048
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Porphyrin Antenna-Enriched BODIPY-Thiophene Copolymer for Efficient Solar Cells.
    Bucher L; Desbois N; Harvey PD; Gros CP; Sharma GD
    ACS Appl Mater Interfaces; 2018 Jan; 10(1):992-1004. PubMed ID: 29256596
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tuning the absorption, charge transport properties, and solar cell efficiency with the number of thienyl rings in platinum-containing poly(aryleneethynylene)s.
    Wong WY; Wang XZ; He Z; Chan KK; Djurisić AB; Cheung KY; Yip CT; Ng AM; Xi YY; Mak CS; Chan WK
    J Am Chem Soc; 2007 Nov; 129(46):14372-80. PubMed ID: 17967015
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photocurrent generation in nanostructured organic solar cells.
    Yang F; Forrest SR
    ACS Nano; 2008 May; 2(5):1022-32. PubMed ID: 19206500
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interfacial Engineering for Quantum-Dot-Sensitized Solar Cells.
    Shen C; Fichou D; Wang Q
    Chem Asian J; 2016 Apr; 11(8):1183-93. PubMed ID: 26879244
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phthalocyanines and porphyrinoid analogues as hole- and electron-transporting materials for perovskite solar cells.
    Urbani M; de la Torre G; Nazeeruddin MK; Torres T
    Chem Soc Rev; 2019 May; 48(10):2738-2766. PubMed ID: 31033978
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.