BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 29762561)

  • 1. Wide dynamic range high-speed three-dimensional quantitative OCT angiography with a hybrid-beam scan.
    Park T; Jang SJ; Han M; Ryu S; Oh WY
    Opt Lett; 2018 May; 43(10):2237-2240. PubMed ID: 29762561
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Visualization of two-dimensional transverse blood flow direction using optical coherence tomography angiography.
    Shin I; Oh WY
    J Biomed Opt; 2020 Dec; 25(12):. PubMed ID: 33331149
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Normalized field autocorrelation function-based optical coherence tomography three-dimensional angiography.
    Tang J; Erdener SE; Sunil S; Boas DA
    J Biomed Opt; 2019 Mar; 24(3):1-8. PubMed ID: 30868803
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Statistical analysis of motion contrast in optical coherence tomography angiography.
    Cheng Y; Guo L; Pan C; Lu T; Hong T; Ding Z; Li P
    J Biomed Opt; 2015 Nov; 20(11):116004. PubMed ID: 26524681
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrated deep learning framework for accelerated optical coherence tomography angiography.
    Kim G; Kim J; Choi WJ; Kim C; Lee S
    Sci Rep; 2022 Jan; 12(1):1289. PubMed ID: 35079046
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TOWARD QUANTITATIVE OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY: Visualizing Blood Flow Speeds in Ocular Pathology Using Variable Interscan Time Analysis.
    Ploner SB; Moult EM; Choi W; Waheed NK; Lee B; Novais EA; Cole ED; Potsaid B; Husvogt L; Schottenhamml J; Maier A; Rosenfeld PJ; Duker JS; Hornegger J; Fujimoto JG
    Retina; 2016 Dec; 36 Suppl 1(Suppl 1):S118-S126. PubMed ID: 28005670
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phase-contrast OCT imaging of transverse flows in the mouse retina and choroid.
    Fingler J; Readhead C; Schwartz DM; Fraser SE
    Invest Ophthalmol Vis Sci; 2008 Nov; 49(11):5055-9. PubMed ID: 18566457
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Model-based blood flow quantification from rotational angiography.
    Waechter I; Bredno J; Hermans R; Weese J; Barratt DC; Hawkes DJ
    Med Image Anal; 2008 Oct; 12(5):586-602. PubMed ID: 18640068
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-speed swept source optical coherence Doppler tomography for deep brain microvascular imaging.
    Chen W; You J; Gu X; Du C; Pan Y
    Sci Rep; 2016 Dec; 6():38786. PubMed ID: 27934907
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography.
    Wojtkowski M; Srinivasan V; Fujimoto JG; Ko T; Schuman JS; Kowalczyk A; Duker JS
    Ophthalmology; 2005 Oct; 112(10):1734-46. PubMed ID: 16140383
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aging-associated changes in cerebral vasculature and blood flow as determined by quantitative optical coherence tomography angiography.
    Li Y; Choi WJ; Wei W; Song S; Zhang Q; Liu J; Wang RK
    Neurobiol Aging; 2018 Oct; 70():148-159. PubMed ID: 30007164
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intervolume analysis to achieve four-dimensional optical microangiography for observation of dynamic blood flow.
    Wei W; Xu J; Baran U; Song S; Qin W; Qi X; Wang RK
    J Biomed Opt; 2016 Mar; 21(3):36005. PubMed ID: 26968387
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative hemodynamic analysis of cerebral blood flow and neurovascular coupling using optical coherence tomography angiography.
    Shin P; Choi W; Joo J; Oh WY
    J Cereb Blood Flow Metab; 2019 Oct; 39(10):1983-1994. PubMed ID: 29757059
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Imaging Blood Flow and Pulsation of Retinal Vessels with Full-Field Swept-Source OCT].
    Spahr H; Hillmann D; Hain C; Pfäffle C; Sudkamp H; Franke G; Koch P; Hüttmann G
    Klin Monbl Augenheilkd; 2016 Dec; 233(12):1324-1330. PubMed ID: 27984838
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multi-parametric imaging of murine brain using spectral and time domain optical coherence tomography.
    Bukowska D; Ruminski D; Szlag D; Grulkowski I; Wlodarczyk J; Szkulmowski M; Wilczynski G; Gorczynska I; Wojtkowski M
    J Biomed Opt; 2012 Oct; 17(10):101515. PubMed ID: 23223991
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiple-capillary measurement of RBC speed, flux, and density with optical coherence tomography.
    Lee J; Wu W; Lesage F; Boas DA
    J Cereb Blood Flow Metab; 2013 Nov; 33(11):1707-10. PubMed ID: 24022621
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Blood flow pattern in a choroidal hemangioma imaged on swept-source-optical coherence tomography angiography.
    Takkar B; Azad S; Shakrawal J; Gaur N; Venkatesh P
    Indian J Ophthalmol; 2017 Nov; 65(11):1240-1242. PubMed ID: 29133666
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The application of optical coherence tomography angiography in retinal diseases.
    Sambhav K; Grover S; Chalam KV
    Surv Ophthalmol; 2017; 62(6):838-866. PubMed ID: 28579550
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative depth-resolved microcirculation imaging with optical coherence tomography angiography (Part Ι): Blood flow velocity imaging.
    Gao W
    Microcirculation; 2018 Aug; 25(6):e12375. PubMed ID: 28419622
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CHOROIDAL BLOOD FLOW VISUALIZATION IN HIGH MYOPIA USING A PROJECTION ARTIFACT METHOD IN OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY.
    Maruko I; Spaide RF; Koizumi H; Sawaguchi S; Izumi T; Hasegawa T; Arakawa H; Iida T
    Retina; 2017 Mar; 37(3):460-465. PubMed ID: 27541926
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.