These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 29762585)

  • 1. Unexpected large nanoparticle size of single dimer hotspot systems for broadband SERS enhancement.
    Huang Y; Chen Y; Xue X; Zhai Y; Wang L; Zhang Z
    Opt Lett; 2018 May; 43(10):2332-2335. PubMed ID: 29762585
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Raman scattering of 4-aminobenzenethiol sandwiched between Ag nanoparticle and macroscopically smooth Au substrate: effects of size of Ag nanoparticles and the excitation wavelength.
    Kim K; Choi JY; Lee HB; Shin KS
    J Chem Phys; 2011 Sep; 135(12):124705. PubMed ID: 21974550
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detailed correlations between SERS enhancement and plasmon resonances in subwavelength closely spaced Au nanorod arrays.
    Huang Y; Zhang X; Ringe E; Ma L; Zhai X; Wang L; Zhang Z
    Nanoscale; 2018 Mar; 10(9):4267-4275. PubMed ID: 29436546
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of Ethanethiolate Spacer on Morphology and Optical Responses of Ag Nanoparticle Array-Single Layer Graphene Hybrid Systems.
    Sutrová V; Šloufová I; Melníková Z; Kalbáč M; Pavlova E; Vlčková B
    Langmuir; 2017 Dec; 33(50):14414-14424. PubMed ID: 29172530
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hybridized plasmon modes and near-field enhancement of metallic nanoparticle-dimer on a mirror.
    Huang Y; Ma L; Hou M; Li J; Xie Z; Zhang Z
    Sci Rep; 2016 Jul; 6():30011. PubMed ID: 27418039
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hybrid nanoparticle-nanoline plasmonic cavities as SERS substrates with gap-controlled enhancements and resonances.
    Sharma Y; Dhawan A
    Nanotechnology; 2014 Feb; 25(8):085202. PubMed ID: 24492249
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of Au aggregate morphology on surface-enhanced Raman scattering enhancement.
    Sztainbuch IW
    J Chem Phys; 2006 Sep; 125(12):124707. PubMed ID: 17014200
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Incident angle-tuned, broadband, ultrahigh-sensitivity plasmonic antennas prepared from nanoparticles on imprinted mirrors.
    Yu CC; Tseng YC; Su PY; Lin KT; Shao CC; Chou SY; Yen YT; Chen HL
    Nanoscale; 2015 Mar; 7(9):3985-96. PubMed ID: 25567353
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The performance of surface enhanced Raman scattering and spatial resolution with triangular plate dimer from ultra-ultraviolet to near-infrared range.
    Wei Y; Pei H; Yan B; Zhu Y
    J Phys Condens Matter; 2021 Nov; 34(4):. PubMed ID: 34670211
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure enhancement factor relationships in single gold nanoantennas by surface-enhanced Raman excitation spectroscopy.
    Kleinman SL; Sharma B; Blaber MG; Henry AI; Valley N; Freeman RG; Natan MJ; Schatz GC; Van Duyne RP
    J Am Chem Soc; 2013 Jan; 135(1):301-8. PubMed ID: 23214430
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo detection of gold-imidazole self-assembly complexes: NIR-SERS signal reporters.
    Souza GR; Levin CS; Hajitou A; Pasqualini R; Arap W; Miller JH
    Anal Chem; 2006 Sep; 78(17):6232-7. PubMed ID: 16944906
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasmonic color analysis of Ag-coated black-Si SERS substrate.
    Asiala SM; Marr JM; Gervinskas G; Juodkazis S; Schultz ZD
    Phys Chem Chem Phys; 2015 Nov; 17(45):30461-7. PubMed ID: 26510016
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Size tunable Au@Ag core-shell nanoparticles: synthesis and surface-enhanced Raman scattering properties.
    Samal AK; Polavarapu L; Rodal-Cedeira S; Liz-Marzán LM; Pérez-Juste J; Pastoriza-Santos I
    Langmuir; 2013 Dec; 29(48):15076-82. PubMed ID: 24261458
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tunable Dipole Surface Plasmon Resonances of Silver Nanoparticles by Cladding Dielectric Layers.
    Liu X; Li D; Sun X; Li Z; Song H; Jiang H; Chen Y
    Sci Rep; 2015 Jul; 5():12555. PubMed ID: 26218501
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alkylamine capped metal nanoparticle "inks" for printable SERS substrates, electronics and broadband photodetectors.
    Polavarapu L; Manga KK; Yu K; Ang PK; Cao HD; Balapanuru J; Loh KP; Xu QH
    Nanoscale; 2011 May; 3(5):2268-74. PubMed ID: 21491022
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unraveling near-field and far-field relationships for 3D SERS substrates--a combined experimental and theoretical analysis.
    Kurouski D; Large N; Chiang N; Greeneltch N; Carron KT; Seideman T; Schatz GC; Van Duyne RP
    Analyst; 2016 Mar; 141(5):1779-88. PubMed ID: 26858996
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [NIR-SERS Spectra Detection of Cytidine on Nano-Silver Films].
    Zhang DQ; Liu RM; Zhang GQ; Zhang Y; Xiong Y; Zhang CY; Li L; Si MZ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Mar; 36(3):743-8. PubMed ID: 27400517
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bi-SERS sensing and enhancement by Au-Ag bimetallic non-alloyed nanoparticles on amorphous and crystalline silicon substrate.
    Tan CL; Lee SK; Lee YT
    Opt Express; 2015 Mar; 23(5):6254-63. PubMed ID: 25836846
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple surface plasmon resonances and near-infrared field enhancement of gold nanowells.
    Li K; Clime L; Tay L; Cui B; Geissler M; Veres T
    Anal Chem; 2008 Jul; 80(13):4945-50. PubMed ID: 18507399
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption.
    Le F; Brandl DW; Urzhumov YA; Wang H; Kundu J; Halas NJ; Aizpurua J; Nordlander P
    ACS Nano; 2008 Apr; 2(4):707-18. PubMed ID: 19206602
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.