These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Efficient CRISPR/Cas9 genome editing with low off-target effects in zebrafish. Hruscha A; Krawitz P; Rechenberg A; Heinrich V; Hecht J; Haass C; Schmid B Development; 2013 Dec; 140(24):4982-7. PubMed ID: 24257628 [TBL] [Abstract][Full Text] [Related]
5. Identification of genomic sites for CRISPR/Cas9-based genome editing in the Vitis vinifera genome. Wang Y; Liu X; Ren C; Zhong GY; Yang L; Li S; Liang Z BMC Plant Biol; 2016 Apr; 16():96. PubMed ID: 27098585 [TBL] [Abstract][Full Text] [Related]
6. Off-target predictions in CRISPR-Cas9 gene editing using deep learning. Lin J; Wong KC Bioinformatics; 2018 Sep; 34(17):i656-i663. PubMed ID: 30423072 [TBL] [Abstract][Full Text] [Related]
7. Assessment of two CRISPR-Cas9 genome editing protocols for rapid generation of Trypanosoma cruzi gene knockout mutants. Burle-Caldas GA; Soares-Simões M; Lemos-Pechnicki L; DaRocha WD; Teixeira SMR Int J Parasitol; 2018 Jul; 48(8):591-596. PubMed ID: 29577891 [TBL] [Abstract][Full Text] [Related]
8. PhytoCRISP-Ex: a web-based and stand-alone application to find specific target sequences for CRISPR/CAS editing. Rastogi A; Murik O; Bowler C; Tirichine L BMC Bioinformatics; 2016 Jul; 17(1):261. PubMed ID: 27363443 [TBL] [Abstract][Full Text] [Related]
9. Cas-Designer: a web-based tool for choice of CRISPR-Cas9 target sites. Park J; Bae S; Kim JS Bioinformatics; 2015 Dec; 31(24):4014-6. PubMed ID: 26358729 [TBL] [Abstract][Full Text] [Related]
10. A quick guide to CRISPR sgRNA design tools. Brazelton VA; Zarecor S; Wright DA; Wang Y; Liu J; Chen K; Yang B; Lawrence-Dill CJ GM Crops Food; 2015; 6(4):266-76. PubMed ID: 26745836 [TBL] [Abstract][Full Text] [Related]
11. caRpools: an R package for exploratory data analysis and documentation of pooled CRISPR/Cas9 screens. Winter J; Breinig M; Heigwer F; Brügemann D; Leible S; Pelz O; Zhan T; Boutros M Bioinformatics; 2016 Feb; 32(4):632-4. PubMed ID: 26508755 [TBL] [Abstract][Full Text] [Related]
13. CRISPR/Cas9 in plants: at play in the genome and at work for crop improvement. Hussain B; Lucas SJ; Budak H Brief Funct Genomics; 2018 Sep; 17(5):319-328. PubMed ID: 29912293 [TBL] [Abstract][Full Text] [Related]
14. Genome Editing by CRISPR/Cas9 in Sorghum Through Biolistic Bombardment. Liu G; Li J; Godwin ID Methods Mol Biol; 2019; 1931():169-183. PubMed ID: 30652290 [TBL] [Abstract][Full Text] [Related]
15. Manipulating plant RNA-silencing pathways to improve the gene editing efficiency of CRISPR/Cas9 systems. Mao Y; Yang X; Zhou Y; Zhang Z; Botella JR; Zhu JK Genome Biol; 2018 Sep; 19(1):149. PubMed ID: 30266091 [TBL] [Abstract][Full Text] [Related]
16. Efficiency and Inheritance of Targeted Mutagenesis in Maize Using CRISPR-Cas9. Zhu J; Song N; Sun S; Yang W; Zhao H; Song W; Lai J J Genet Genomics; 2016 Jan; 43(1):25-36. PubMed ID: 26842991 [TBL] [Abstract][Full Text] [Related]
17. GUIDEseq: a bioconductor package to analyze GUIDE-Seq datasets for CRISPR-Cas nucleases. Zhu LJ; Lawrence M; Gupta A; Pagès H; Kucukural A; Garber M; Wolfe SA BMC Genomics; 2017 May; 18(1):379. PubMed ID: 28506212 [TBL] [Abstract][Full Text] [Related]
18. WU-CRISPR: characteristics of functional guide RNAs for the CRISPR/Cas9 system. Wong N; Liu W; Wang X Genome Biol; 2015 Nov; 16():218. PubMed ID: 26521937 [TBL] [Abstract][Full Text] [Related]
19. Web-based design and analysis tools for CRISPR base editing. Hwang GH; Park J; Lim K; Kim S; Yu J; Yu E; Kim ST; Eils R; Kim JS; Bae S BMC Bioinformatics; 2018 Dec; 19(1):542. PubMed ID: 30587106 [TBL] [Abstract][Full Text] [Related]
20. CCTop: An Intuitive, Flexible and Reliable CRISPR/Cas9 Target Prediction Tool. Stemmer M; Thumberger T; Del Sol Keyer M; Wittbrodt J; Mateo JL PLoS One; 2015; 10(4):e0124633. PubMed ID: 25909470 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]