These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 29762892)

  • 41. Phosphonium-organophosphate ionic liquids as lubricant additives: effects of cation structure on physicochemical and tribological characteristics.
    Barnhill WC; Qu J; Luo H; Meyer HM; Ma C; Chi M; Papke BL
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):22585-93. PubMed ID: 25402002
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Thermal and transport properties of ionic liquids based on benzyl-substituted phosphonium cations.
    Tsunashima K; Niwa E; Kodama S; Sugiya M; Ono Y
    J Phys Chem B; 2009 Dec; 113(48):15870-4. PubMed ID: 19929012
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Ionic liquids based on dicyanamide anion: influence of structural variations in cationic structures on ionic conductivity.
    Yoshida Y; Baba O; Saito G
    J Phys Chem B; 2007 May; 111(18):4742-9. PubMed ID: 17474700
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Designer molecular probes for phosphonium ionic liquids.
    Byrne R; Coleman S; Gallagher S; Diamond D
    Phys Chem Chem Phys; 2010 Feb; 12(8):1895-904. PubMed ID: 20145857
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effects of phosphonium-based ionic liquids on phospholipid membranes studied by small-angle X-ray scattering.
    Kontro I; Svedström K; Duša F; Ahvenainen P; Ruokonen SK; Witos J; Wiedmer SK
    Chem Phys Lipids; 2016 Dec; 201():59-66. PubMed ID: 27836694
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Ionic liquids composed of phosphonium cations and organophosphate, carboxylate, and sulfonate anions as lubricant antiwear additives.
    Zhou Y; Dyck J; Graham TW; Luo H; Leonard DN; Qu J
    Langmuir; 2014 Nov; 30(44):13301-11. PubMed ID: 25330413
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Thermal, rheological, and ion-transport properties of phosphonium-based ionic liquids.
    Green MD; Schreiner C; Long TE
    J Phys Chem A; 2011 Dec; 115(47):13829-35. PubMed ID: 22026727
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Physicochemical properties and plastic crystal structures of phosphonium fluorohydrogenate salts.
    Enomoto T; Kanematsu S; Tsunashima K; Matsumoto K; Hagiwara R
    Phys Chem Chem Phys; 2011 Jul; 13(27):12536-44. PubMed ID: 21666902
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Carbon-centered strong bases in phosphonium ionic liquids.
    Ramnial T; Taylor SA; Bender ML; Gorodetsky B; Lee PT; Dickie DA; McCollum BM; Pye CC; Walsby CJ; Clyburne JA
    J Org Chem; 2008 Feb; 73(3):801-12. PubMed ID: 18173280
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Design criteria for ionic liquid crystalline phases of phosphonium salts with three equivalent long n-alkyl chains.
    Ma K; Lee KM; Minkova L; Weiss RG
    J Org Chem; 2009 Mar; 74(5):2088-98. PubMed ID: 19209929
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Self-Modulation-Guided Growth of 2D Tellurides with Ultralow Thermal Conductivity.
    Lan H; Wang L; Li Y; Deng S; Yue Y; Zhang T; Zhang S; Zeng M; Fu L
    Small; 2022 Oct; 18(41):e2204595. PubMed ID: 36089669
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Dual amino-functionalised phosphonium ionic liquids for CO2 capture.
    Zhang Y; Zhang S; Lu X; Zhou Q; Fan W; Zhang X
    Chemistry; 2009; 15(12):3003-11. PubMed ID: 19185037
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effect of Structure on Transport Properties (Viscosity, Ionic Conductivity, and Self-Diffusion Coefficient) of Aprotic Heterocyclic Anion (AHA) Room Temperature Ionic Liquids. 2. Variation of Alkyl Chain Length in the Phosphonium Cation.
    Sun L; Morales-Collazo O; Xia H; Brennecke JF
    J Phys Chem B; 2016 Jun; 120(25):5767-76. PubMed ID: 27243107
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Ionic liquids for nano- and microstructures preparation. Part 2: Application in synthesis.
    Łuczak J; Paszkiewicz M; Krukowska A; Malankowska A; Zaleska-Medynska A
    Adv Colloid Interface Sci; 2016 Jan; 227():1-52. PubMed ID: 26520242
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Activity and stability of α-chymotrypsin in biocompatible ionic liquids: enzyme refolding by triethyl ammonium acetate.
    Attri P; Venkatesu P; Kumar A
    Phys Chem Chem Phys; 2011 Feb; 13(7):2788-96. PubMed ID: 21152617
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The acidity/basicity of metal-containing ionic liquids: insights from surface analysis and the Fukui function.
    Wu W; Lu Y; Ding H; Peng C; Liu H
    Phys Chem Chem Phys; 2015 Jan; 17(2):1339-46. PubMed ID: 25425221
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Phosphonium-based ionic liquids as antifungal agents for conservation of heritage sandstone.
    Li Q; Hu Y; Zhang B
    RSC Adv; 2022 Jan; 12(4):1922-1931. PubMed ID: 35425254
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Metsulfuron-methyl-based herbicidal ionic liquids.
    Pernak J; Niemczak M; Shamshina JL; Gurau G; Głowacki G; Praczyk T; Marcinkowska K; Rogers RD
    J Agric Food Chem; 2015 Apr; 63(13):3357-66. PubMed ID: 25734891
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Thermal stability of trihexyl(tetradecyl)phosphonium chloride.
    Deferm C; Van den Bossche A; Luyten J; Oosterhof H; Fransaer J; Binnemans K
    Phys Chem Chem Phys; 2018 Jan; 20(4):2444-2456. PubMed ID: 29313045
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Solvate and protic ionic liquids from aza-crown ethers: synthesis, thermal properties, and LCST behavior.
    Oba Y; Okuhata M; Osakai T; Mochida T
    Phys Chem Chem Phys; 2018 Jan; 20(5):3118-3127. PubMed ID: 28849817
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.