These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 29763562)

  • 1. Unraveling the Enzymatic Activity of Oxygenated Carbon Nanotubes and Their Application in the Treatment of Bacterial Infections.
    Wang H; Li P; Yu D; Zhang Y; Wang Z; Liu C; Qiu H; Liu Z; Ren J; Qu X
    Nano Lett; 2018 Jun; 18(6):3344-3351. PubMed ID: 29763562
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomimetic design for enhancing the peroxidase mimicking activity of hemin.
    Wu W; Wang Q; Chen J; Huang L; Zhang H; Rong K; Dong S
    Nanoscale; 2019 Jul; 11(26):12603-12609. PubMed ID: 31232410
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Copper/Carbon Hybrid Nanozyme: Tuning Catalytic Activity by the Copper State for Antibacterial Therapy.
    Xi J; Wei G; An L; Xu Z; Xu Z; Fan L; Gao L
    Nano Lett; 2019 Nov; 19(11):7645-7654. PubMed ID: 31580681
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioinspired Design of Fe
    Sang Y; Huang Y; Li W; Ren J; Qu X
    Chemistry; 2018 May; 24(28):7259-7263. PubMed ID: 29573045
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-performance non-enzymatic catalysts based on 3D hierarchical hollow porous Co
    Wang S; Zhang X; Huang J; Chen J
    Anal Bioanal Chem; 2018 Mar; 410(7):2019-2029. PubMed ID: 29392380
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbon nanotubes as anti-bacterial agents.
    Mocan T; Matea CT; Pop T; Mosteanu O; Buzoianu AD; Suciu S; Puia C; Zdrehus C; Iancu C; Mocan L
    Cell Mol Life Sci; 2017 Oct; 74(19):3467-3479. PubMed ID: 28536787
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanomaterial-based treatments for medical device-associated infections.
    Tran N; Tran PA
    Chemphyschem; 2012 Jul; 13(10):2481-94. PubMed ID: 22517627
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catalytically active nanomaterials: a promising candidate for artificial enzymes.
    Lin Y; Ren J; Qu X
    Acc Chem Res; 2014 Apr; 47(4):1097-105. PubMed ID: 24437921
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficiently stabilized spherical vaterite CaCO3 crystals by carbon nanotubes in biomimetic mineralization.
    Li W; Gao C
    Langmuir; 2007 Apr; 23(8):4575-82. PubMed ID: 17358086
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Binding and condensation of plasmid DNA onto functionalized carbon nanotubes: toward the construction of nanotube-based gene delivery vectors.
    Singh R; Pantarotto D; McCarthy D; Chaloin O; Hoebeke J; Partidos CD; Briand JP; Prato M; Bianco A; Kostarelos K
    J Am Chem Soc; 2005 Mar; 127(12):4388-96. PubMed ID: 15783221
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomimetic surface modification of polyurethane with phospholipids grafted carbon nanotubes.
    Tan D; Liu L; Li Z; Fu Q
    J Biomed Mater Res A; 2015 Aug; 103(8):2711-9. PubMed ID: 25630300
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bienzymatic synergism of vanadium oxide nanodots to efficiently eradicate drug-resistant bacteria during wound healing in vivo.
    Ma W; Zhang T; Li R; Niu Y; Yang X; Liu J; Xu Y; Li CM
    J Colloid Interface Sci; 2020 Feb; 559():313-323. PubMed ID: 31675662
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Designing electrochemical interfaces based on nanohybrids of avidin functionalized-carbon nanotubes and ruthenium nanoparticles as peroxidase-like nanozyme with supramolecular recognition properties for site-specific anchoring of biotinylated residues.
    Gallay P; Eguílaz M; Rivas G
    Biosens Bioelectron; 2020 Jan; 148():111764. PubMed ID: 31707325
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Specific Oxygenated Groups Enriched Graphene Quantum Dots as Highly Efficient Enzyme Mimics.
    Wang H; Liu C; Liu Z; Ren J; Qu X
    Small; 2018 Mar; 14(13):e1703710. PubMed ID: 29430831
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Helical carbon nanotubes: intrinsic peroxidase catalytic activity and its application for biocatalysis and biosensing.
    Cui R; Han Z; Zhu JJ
    Chemistry; 2011 Aug; 17(34):9377-84. PubMed ID: 21769953
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancing Enzyme Immobilization on Carbon Nanotubes via Metal-Organic Frameworks for Large-Substrate Biocatalysis.
    Neupane S; Patnode K; Li H; Baryeh K; Liu G; Hu J; Chen B; Pan Y; Yang Z
    ACS Appl Mater Interfaces; 2019 Mar; 11(12):12133-12141. PubMed ID: 30839195
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GSH-Depleted Nanozymes with Hyperthermia-Enhanced Dual Enzyme-Mimic Activities for Tumor Nanocatalytic Therapy.
    Dong S; Dong Y; Jia T; Liu S; Liu J; Yang D; He F; Gai S; Yang P; Lin J
    Adv Mater; 2020 Oct; 32(42):e2002439. PubMed ID: 32914495
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of the Surface Functional Group Density on the Carbon-Nanotube-Induced α-Chymotrypsin Structure and Activity Alterations.
    Zhao X; Hao F; Lu D; Liu W; Zhou Q; Jiang G
    ACS Appl Mater Interfaces; 2015 Aug; 7(33):18880-90. PubMed ID: 26248557
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multienzymes activity of metals and metal oxide nanomaterials: applications from biotechnology to medicine and environmental engineering.
    Alizadeh N; Salimi A
    J Nanobiotechnology; 2021 Jan; 19(1):26. PubMed ID: 33468160
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modification of Fatty acids in membranes of bacteria: implication for an adaptive mechanism to the toxicity of carbon nanotubes.
    Zhu B; Xia X; Xia N; Zhang S; Guo X
    Environ Sci Technol; 2014 Apr; 48(7):4086-95. PubMed ID: 24579825
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.