BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 29763563)

  • 1. Rh(DPEPhos)-Catalyzed Alkyne Hydroacylation Using β-Carbonyl-Substituted Aldehydes: Mechanistic Insight Leads to Low Catalyst Loadings that Enables Selective Catalysis on Gram-Scale.
    Barwick-Silk J; Hardy S; Willis MC; Weller AS
    J Am Chem Soc; 2018 Jun; 140(23):7347-7357. PubMed ID: 29763563
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intermolecular alkene and alkyne hydroacylation with beta-S-substituted aldehydes: mechanistic insight into the role of a hemilabile P-O-P ligand.
    Moxham GL; Randell-Sly H; Brayshaw SK; Weller AS; Willis MC
    Chemistry; 2008; 14(27):8383-97. PubMed ID: 18666296
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intermolecular hydroacylation: high activity rhodium catalysts containing small-bite-angle diphosphine ligands.
    Chaplin AB; Hooper JF; Weller AS; Willis MC
    J Am Chem Soc; 2012 Mar; 134(10):4885-97. PubMed ID: 22324763
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploiting Carbonyl Groups to Control Intermolecular Rhodium-Catalyzed Alkene and Alkyne Hydroacylation.
    Coxon TJ; Fernández M; Barwick-Silk J; McKay AI; Britton LE; Weller AS; Willis MC
    J Am Chem Soc; 2017 Jul; 139(29):10142-10149. PubMed ID: 28715214
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rhodium-catalyzed intermolecular chelation controlled alkene and alkyne hydroacylation: synthetic scope of beta-S-substituted aldehyde substrates.
    Willis MC; Randell-Sly HE; Woodward RL; McNally SJ; Currie GS
    J Org Chem; 2006 Jul; 71(14):5291-7. PubMed ID: 16808518
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Teaching Aldehydes New Tricks Using Rhodium- and Cobalt-Hydride Catalysis.
    Davison RT; Kuker EL; Dong VM
    Acc Chem Res; 2021 Mar; 54(5):1236-1250. PubMed ID: 33533586
    [TBL] [Abstract][Full Text] [Related]  

  • 7. α-Amidoaldehydes as Substrates in Rhodium-Catalyzed Intermolecular Alkyne Hydroacylation: The Synthesis of α-Amidoketones.
    Pal R; O'Brien SC; Willis MC
    Chemistry; 2020 Sep; 26(51):11710-11714. PubMed ID: 32449532
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rhodium-phosphoramidite catalyzed alkene hydroacylation: mechanism and octaketide natural product synthesis.
    von Delius M; Le CM; Dong VM
    J Am Chem Soc; 2012 Sep; 134(36):15022-32. PubMed ID: 22938187
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanistic insights into the rhodium-catalyzed intramolecular ketone hydroacylation.
    Shen Z; Dornan PK; Khan HA; Woo TK; Dong VM
    J Am Chem Soc; 2009 Jan; 131(3):1077-91. PubMed ID: 19128061
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intermolecular Markovnikov-Selective Hydroacylation of Olefins Catalyzed by a Cationic Ruthenium-Hydride Complex.
    Kim J; Yi CS
    ACS Catal; 2016 May; 6(5):3336-3339. PubMed ID: 30505623
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Azine-N-oxides as effective controlling groups for Rh-catalysed intermolecular alkyne hydroacylation.
    Moseley DF; Kalepu J; Willis MC
    Chem Sci; 2021 Oct; 12(39):13068-13073. PubMed ID: 34745537
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of α,β-unsaturated ketones through nickel-catalysed aldehyde-free hydroacylation of alkynes.
    Rhlee JH; Maiti S; Lee JW; Lee HS; Bakhtiyorzoda IA; Lee S; Park J; Kang SJ; Kim YS; Seo JK; Myung K; Choe W; Hong SY
    Commun Chem; 2022 Feb; 5(1):13. PubMed ID: 36697817
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scope and mechanism of the intermolecular addition of aromatic aldehydes to olefins catalyzed by Rh(I) olefin complexes.
    Roy AH; Lenges CP; Brookhart M
    J Am Chem Soc; 2007 Feb; 129(7):2082-93. PubMed ID: 17263531
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dehydropolymerization of H
    Adams GM; Ryan DE; Beattie NA; McKay AI; Lloyd-Jones GC; Weller AS
    ACS Catal; 2019 Apr; 9(4):3657-3666. PubMed ID: 30984472
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanistic studies of the dehydrocoupling and dehydropolymerization of amine-boranes using a [Rh(Xantphos)]⁺ catalyst.
    Johnson HC; Leitao EM; Whittell GR; Manners I; Lloyd-Jones GC; Weller AS
    J Am Chem Soc; 2014 Jun; 136(25):9078-93. PubMed ID: 24844130
    [TBL] [Abstract][Full Text] [Related]  

  • 16. α-Amino Aldehydes as Readily Available Chiral Aldehydes for Rh-Catalyzed Alkyne Hydroacylation.
    Hooper JF; Seo S; Truscott FR; Neuhaus JD; Willis MC
    J Am Chem Soc; 2016 Feb; 138(5):1630-4. PubMed ID: 26771104
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydroacylation of activated ketones catalyzed by N-heterocyclic carbenes.
    Chan A; Scheidt KA
    J Am Chem Soc; 2006 Apr; 128(14):4558-9. PubMed ID: 16594677
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conjugate addition vs Heck reaction: a theoretical study on competitive coupling catalyzed by isoelectronic metal (Pd(II) and Rh(I)).
    Peng Q; Yan H; Zhang X; Wu YD
    J Org Chem; 2012 Sep; 77(17):7487-96. PubMed ID: 22876853
    [TBL] [Abstract][Full Text] [Related]  

  • 19. O-substituted alkyl aldehydes for rhodium-catalyzed intermolecular alkyne hydroacylation: the utility of methylthiomethyl ethers.
    Parsons SR; Hooper JF; Willis MC
    Org Lett; 2011 Mar; 13(5):998-1000. PubMed ID: 21309521
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dehydrocoupling of dimethylamine borane catalyzed by Rh(PCy3)2H2Cl.
    Sewell LJ; Huertos MA; Dickinson ME; Weller AS; Lloyd-Jones GC
    Inorg Chem; 2013 Apr; 52(8):4509-16. PubMed ID: 23544802
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.