BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

318 related articles for article (PubMed ID: 29763689)

  • 1. Surface engineered excipients: II. Simultaneous milling and dry coating for preparation of fine-grade microcrystalline cellulose with enhanced properties.
    Chen L; Ding X; He Z; Fan S; Kunnath KT; Zheng K; Davé RN
    Int J Pharm; 2018 Jul; 546(1-2):125-136. PubMed ID: 29763689
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface engineered excipients: III. Facilitating direct compaction tableting of binary blends containing fine cohesive poorly-compactable APIs.
    Chen L; He Z; Kunnath KT; Fan S; Wei Y; Ding X; Zheng K; Davé RN
    Int J Pharm; 2019 Feb; 557():354-365. PubMed ID: 30597273
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fine grade engineered microcrystalline cellulose excipients for direct compaction: Assessing suitability of different dry coating processes.
    Chen L; He Z; Kunnath K; Zheng K; Kim S; Davé RN
    Eur J Pharm Sci; 2020 Aug; 151():105408. PubMed ID: 32502519
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface engineered excipients: I. improved functional properties of fine grade microcrystalline cellulose.
    Chen L; Ding X; He Z; Huang Z; Kunnath KT; Zheng K; Davé RN
    Int J Pharm; 2018 Jan; 536(1):127-137. PubMed ID: 29191481
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved blend and tablet properties of fine pharmaceutical powders via dry particle coating.
    Huang Z; Scicolone JV; Han X; Davé RN
    Int J Pharm; 2015 Jan; 478(2):447-55. PubMed ID: 25475016
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Facilitating direct compaction tableting of fine cohesive APIs using dry coated fine excipients: Effect of the excipient size and amount of coated silica.
    Lin Z; Cabello B; Kossor C; Davé R
    Int J Pharm; 2024 Jun; 660():124359. PubMed ID: 38901539
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of dry coating lactose as a brittle excipient on multi-component blend processability.
    Lin Z; Cabello B; Davé RN
    Int J Pharm; 2024 Mar; 653():123921. PubMed ID: 38382769
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of moisture induced variations in true density and compaction properties of microcrystalline cellulose.
    Sun CC
    Int J Pharm; 2008 Jan; 346(1-2):93-101. PubMed ID: 17669609
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insight Into a Novel Strategy for the Design of Tablet Formulations Intended for Direct Compression.
    Capece M; Huang Z; Davé R
    J Pharm Sci; 2017 Jun; 106(6):1608-1617. PubMed ID: 28283431
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of the variation in the ambient moisture on the compaction behavior of powder undergoing roller-compaction and on the characteristics of tablets produced from the post-milled granules.
    Gupta A; Peck GE; Miller RW; Morris KR
    J Pharm Sci; 2005 Oct; 94(10):2314-26. PubMed ID: 16136545
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combining experimental design and orthogonal projections to latent structures to study the influence of microcrystalline cellulose properties on roll compaction.
    Dumarey M; Wikström H; Fransson M; Sparén A; Tajarobi P; Josefson M; Trygg J
    Int J Pharm; 2011 Sep; 416(1):110-9. PubMed ID: 21708239
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of Surfactants on Itraconazole-Hydroxypropyl Methylcellulose Acetate Succinate Solid Dispersion Prepared by Hot Melt Extrusion III: Tableting of Extrudates and Drug Release From Tablets.
    Solanki NG; Kathawala M; Serajuddin ATM
    J Pharm Sci; 2019 Dec; 108(12):3859-3869. PubMed ID: 31542437
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of compressibility and compactibility parameters of roller compacted Theophylline and its binary mixtures.
    Hadžović E; Betz G; Hadžidedić S; El-Arini SK; Leuenberger H
    Int J Pharm; 2011 Sep; 416(1):97-103. PubMed ID: 21704142
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of the porosity of cushioning excipients on the compaction of coated multi-particulates.
    Elsergany RN; Chan LW; Heng PWS
    Eur J Pharm Biopharm; 2020 Jul; 152():218-228. PubMed ID: 32445966
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The granule porosity controls the loss of compactibility for both dry- and wet-processed cellulose granules but at different rate.
    Nordström J; Alderborn G
    J Pharm Sci; 2015 Jun; 104(6):2029-2039. PubMed ID: 25872760
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tensile strength and disintegration of tableted silicified microcrystalline cellulose: influences of interparticle bonding.
    Kachrimanis K; Nikolakakis I; Malamataris S
    J Pharm Sci; 2003 Jul; 92(7):1489-501. PubMed ID: 12820153
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of non-crystalline cellulose as a novel excipient in solid dose products.
    Pawar K; Render D; Rangari V; Lee Y; Babu RJ
    Drug Dev Ind Pharm; 2018 Sep; 44(9):1512-1519. PubMed ID: 29734848
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of tableting and tablet properties of Kollidon SR: the influence of moisture and mixtures with theophylline monohydrate.
    Hauschild K; Picker-Freyer KM
    Pharm Dev Technol; 2006 Feb; 11(1):125-40. PubMed ID: 16544916
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The impact of roller compaction and tablet compression on physicomechanical properties of pharmaceutical excipients.
    Iyer RM; Hegde S; Dinunzio J; Singhal D; Malick W
    Pharm Dev Technol; 2014 Aug; 19(5):583-92. PubMed ID: 23941645
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of compacted hydrophobic and hydrophilic colloidal silicon dioxide on tableting properties of pharmaceutical excipients.
    Jonat S; Hasenzahl S; Gray A; Schmidt PC
    Drug Dev Ind Pharm; 2005 Aug; 31(7):687-96. PubMed ID: 16207616
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.