These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
312 related articles for article (PubMed ID: 29764135)
1. Fast-forward Langevin dynamics with momentum flips. Hijazi M; Wilkins DM; Ceriotti M J Chem Phys; 2018 May; 148(18):184109. PubMed ID: 29764135 [TBL] [Abstract][Full Text] [Related]
2. Implementations of Nosé-Hoover and Nosé-Poincaré thermostats in mesoscopic dynamic simulations with the united-residue model of a polypeptide chain. Kleinerman DS; Czaplewski C; Liwo A; Scheraga HA J Chem Phys; 2008 Jun; 128(24):245103. PubMed ID: 18601387 [TBL] [Abstract][Full Text] [Related]
3. Ergodicity of a thermostat family of the Nosé-Hoover type. Watanabe H; Kobayashi H Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Apr; 75(4 Pt 1):040102. PubMed ID: 17500844 [TBL] [Abstract][Full Text] [Related]
4. Conserving the linear momentum in stochastic dynamics: Dissipative particle dynamics as a general strategy to achieve local thermostatization in molecular dynamics simulations. Passler PP; Hofer TS J Comput Chem; 2017 Feb; 38(5):265-275. PubMed ID: 27888515 [TBL] [Abstract][Full Text] [Related]
5. An ergodic configurational thermostat using selective control of higher order temperatures. Patra PK; Bhattacharya B J Chem Phys; 2015 May; 142(19):194103. PubMed ID: 26001443 [TBL] [Abstract][Full Text] [Related]
6. A unified thermostat scheme for efficient configurational sampling for classical/quantum canonical ensembles via molecular dynamics. Zhang Z; Liu X; Chen Z; Zheng H; Yan K; Liu J J Chem Phys; 2017 Jul; 147(3):034109. PubMed ID: 28734283 [TBL] [Abstract][Full Text] [Related]
7. Efficient stochastic thermostatting of path integral molecular dynamics. Ceriotti M; Parrinello M; Markland TE; Manolopoulos DE J Chem Phys; 2010 Sep; 133(12):124104. PubMed ID: 20886921 [TBL] [Abstract][Full Text] [Related]
8. Comparison of dissipative particle dynamics and Langevin thermostats for out-of-equilibrium simulations of polymeric systems. Pastorino C; Kreer T; Müller M; Binder K Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Aug; 76(2 Pt 2):026706. PubMed ID: 17930173 [TBL] [Abstract][Full Text] [Related]
9. Effects of Temperature Control Algorithms on Transport Properties and Kinetics in Molecular Dynamics Simulations. Basconi JE; Shirts MR J Chem Theory Comput; 2013 Jul; 9(7):2887-99. PubMed ID: 26583973 [TBL] [Abstract][Full Text] [Related]
10. Investigation of the influence of thermostat configurations on the mechanical properties of carbon nanotubes in molecular dynamics simulations. Heo S; Sinnott SB J Nanosci Nanotechnol; 2007; 7(4-5):1518-24. PubMed ID: 17450920 [TBL] [Abstract][Full Text] [Related]
11. Thermostats and thermostat strategies for molecular dynamics simulations of nanofluidics. Yong X; Zhang LT J Chem Phys; 2013 Feb; 138(8):084503. PubMed ID: 23464156 [TBL] [Abstract][Full Text] [Related]
12. Simulations of proteins with inhomogeneous degrees of freedom: The effect of thermostats. Mor A; Ziv G; Levy Y J Comput Chem; 2008 Sep; 29(12):1992-8. PubMed ID: 18366022 [TBL] [Abstract][Full Text] [Related]
13. Further cautionary tales on thermostatting in molecular dynamics: Energy equipartitioning and non-equilibrium processes in gas-phase simulations. Halonen R; Neefjes I; Reischl B J Chem Phys; 2023 May; 158(19):. PubMed ID: 37184012 [TBL] [Abstract][Full Text] [Related]