These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
204 related articles for article (PubMed ID: 29764144)
1. From intermediate anisotropic to isotropic friction at large strain rates to account for viscosity thickening in polymer solutions. Stephanou PS; Kröger M J Chem Phys; 2018 May; 148(18):184903. PubMed ID: 29764144 [TBL] [Abstract][Full Text] [Related]
2. Communication: Appearance of undershoots in start-up shear: Experimental findings captured by tumbling-snake dynamics. Stephanou PS; Schweizer T; Kröger M J Chem Phys; 2017 Apr; 146(16):161101. PubMed ID: 28456214 [TBL] [Abstract][Full Text] [Related]
3. Tumbling-Snake Model for Polymeric Liquids Subjected to Biaxial Elongational Flows with a Focus on Planar Elongation. Stephanou PS; Kröger M Polymers (Basel); 2018 Mar; 10(3):. PubMed ID: 30966364 [TBL] [Abstract][Full Text] [Related]
4. Simple, Accurate and User-Friendly Differential Constitutive Model for the Rheology of Entangled Polymer Melts and Solutions from Nonequilibrium Thermodynamics. S Stephanou P; Ch Tsimouri I; G Mavrantzas V Materials (Basel); 2020 Jun; 13(12):. PubMed ID: 32604858 [TBL] [Abstract][Full Text] [Related]
5. Non-constant link tension coefficient in the tumbling-snake model subjected to simple shear. Stephanou PS; Kröger M J Chem Phys; 2017 Nov; 147(17):174903. PubMed ID: 29117693 [TBL] [Abstract][Full Text] [Related]
6. Tension thickening, molecular shape, and flow birefringence of an H-shaped polymer melt in steady shear and planar extension. Baig C; Mavrantzas VG J Chem Phys; 2010 Jan; 132(1):014904. PubMed ID: 20078181 [TBL] [Abstract][Full Text] [Related]
7. Assessment of the Tumbling-Snake Model against Linear and Nonlinear Rheological Data of Bidisperse Polymer Blends. Stephanou PS; Kröger M Polymers (Basel); 2019 Feb; 11(2):. PubMed ID: 30960360 [TBL] [Abstract][Full Text] [Related]
8. Solution of the complete Curtiss-Bird model for polymeric liquids subjected to simple shear flow. Stephanou PS; Kröger M J Chem Phys; 2016 Mar; 144(12):124905. PubMed ID: 27036477 [TBL] [Abstract][Full Text] [Related]
10. Extensional Strain Hardening Induced by π-π Interactions in Barely Entangled Polymer Chains: The Curious Case of Poly(4-vinylbiphenyl). López-Barrón CR; Zhou H Phys Rev Lett; 2017 Dec; 119(24):247801. PubMed ID: 29286722 [TBL] [Abstract][Full Text] [Related]
11. Understanding the Dynamics of Cellulose Dissolved in an Ionic Liquid Solvent Under Shear and Extensional Flows. Owens CE; Du J; Sánchez PB Biomacromolecules; 2022 May; 23(5):1958-1969. PubMed ID: 35442676 [TBL] [Abstract][Full Text] [Related]
12. Flow of concentrated viscoelastic polymer solutions in porous media: effect of M(W) and concentration on elastic turbulence onset in various geometries. Howe AM; Clarke A; Giernalczyk D Soft Matter; 2015 Aug; 11(32):6419-31. PubMed ID: 26174700 [TBL] [Abstract][Full Text] [Related]
13. Slip-Spring and Kink Dynamics Models for Fast Extensional Flow of Entangled Polymeric Fluids. Moghadam S; Saha Dalal I; Larson RG Polymers (Basel); 2019 Mar; 11(3):. PubMed ID: 30960449 [TBL] [Abstract][Full Text] [Related]
14. The Challenges Facing the Current Paradigm Describing Viscoelastic Interactions in Polymer Melts. Ibar JP Polymers (Basel); 2023 Nov; 15(21):. PubMed ID: 37959989 [TBL] [Abstract][Full Text] [Related]
15. Statics, linear, and nonlinear dynamics of entangled polystyrene melts simulated through the primitive chain network model. Yaoita T; Isaki T; Masubuchi Y; Watanabe H; Ianniruberto G; Greco F; Marrucci G J Chem Phys; 2008 Apr; 128(15):154901. PubMed ID: 18433271 [TBL] [Abstract][Full Text] [Related]