These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 29764252)

  • 41. Exponential Modeling of Frequency-Following Responses in American Neonates and Adults.
    Jeng FC; Nance B; Montgomery-Reagan K; Lin CD
    J Am Acad Audiol; 2018 Feb; 29(2):125-134. PubMed ID: 29401060
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Gender disparity in subcortical encoding of binaurally presented speech stimuli: an auditory evoked potentials study.
    Ahadi M; Pourbakht A; Jafari AH; Shirjian Z; Jafarpisheh AS
    Auris Nasus Larynx; 2014 Jun; 41(3):239-43. PubMed ID: 24183398
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Tone language experience-dependent advantage in pitch representation in brainstem and auditory cortex is maintained under reverberation.
    Krishnan A; Suresh CH; Gandour JT
    Hear Res; 2019 Jun; 377():61-71. PubMed ID: 30921642
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Intelligible speech encoded in the human brain stem frequency-following response.
    Galbraith GC; Arbagey PW; Branski R; Comerci N; Rector PM
    Neuroreport; 1995 Nov; 6(17):2363-7. PubMed ID: 8747154
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The temporal relationship between speech auditory brainstem responses and the acoustic pattern of the phoneme /ba/ in normal-hearing adults.
    Akhoun I; Gallégo S; Moulin A; Ménard M; Veuillet E; Berger-Vachon C; Collet L; Thai-Van H
    Clin Neurophysiol; 2008 Apr; 119(4):922-33. PubMed ID: 18291717
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Simultaneously-evoked auditory potentials (SEAP): A new method for concurrent measurement of cortical and subcortical auditory-evoked activity.
    Slugocki C; Bosnyak D; Trainor LJ
    Hear Res; 2017 Mar; 345():30-42. PubMed ID: 28043881
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Speech-evoked ABR: Effects of age and simulated neural temporal jitter.
    Mamo SK; Grose JH; Buss E
    Hear Res; 2016 Mar; 333():201-209. PubMed ID: 26368029
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Subcortical neural representation to Mandarin pitch contours in American and Chinese newborns.
    Jeng FC; Lin CD; Wang TC
    J Acoust Soc Am; 2016 Jun; 139(6):EL190. PubMed ID: 27369171
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Human frequency-following response: representation of tonal sweeps.
    Krishnan A; Parkinson J
    Audiol Neurootol; 2000; 5(6):312-21. PubMed ID: 11025331
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Neural generators of the frequency-following response elicited to stimuli of low and high frequency: A magnetoencephalographic (MEG) study.
    Gorina-Careta N; Kurkela JLO; Hämäläinen J; Astikainen P; Escera C
    Neuroimage; 2021 May; 231():117866. PubMed ID: 33592244
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effects of Temporal Envelope Cutoff Frequency, Number of Channels, and Carrier Type on Brainstem Neural Representation of Pitch in Vocoded Speech.
    Ananthakrishnan S; Luo X
    J Speech Lang Hear Res; 2022 Aug; 65(8):3146-3164. PubMed ID: 35944032
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Brain stem evoked response to forward and reversed speech in humans.
    Galbraith GC; Amaya EM; de Rivera JM; Donan NM; Duong MT; Hsu JN; Tran K; Tsang LP
    Neuroreport; 2004 Sep; 15(13):2057-60. PubMed ID: 15486481
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Sonification of scalp-recorded frequency-following responses (FFRs) offers improved response detection over conventional statistical metrics.
    Bidelman GM
    J Neurosci Methods; 2018 Jan; 293():59-66. PubMed ID: 28917659
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Duplex perception reveals brainstem auditory representations are modulated by listeners' ongoing percept for speech.
    Rizzi R; Bidelman GM
    Cereb Cortex; 2023 Sep; 33(18):10076-10086. PubMed ID: 37522248
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Experience-dependent enhancement of linguistic pitch representation in the brainstem is not specific to a speech context.
    Krishnan A; Swaminathan J; Gandour JT
    J Cogn Neurosci; 2009 Jun; 21(6):1092-105. PubMed ID: 18702588
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Brainstem encoding of frequency-modulated sweeps is relevant to Mandarin concurrent-vowels identification for normal-hearing and hearing-impaired listeners.
    Fu Z; Yang H; Chen F; Wu X; Chen J
    Hear Res; 2019 Sep; 380():123-136. PubMed ID: 31279277
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Biometric identification of listener identity from frequency following responses to speech.
    Llanos F; Xie Z; Chandrasekaran B
    J Neural Eng; 2019 Jul; 16(5):056004. PubMed ID: 31039552
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Human frequency-following response: representation of pitch contours in Chinese tones.
    Krishnan A; Xu Y; Gandour JT; Cariani PA
    Hear Res; 2004 Mar; 189(1-2):1-12. PubMed ID: 14987747
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Human frequency following responses to iterated rippled noise with positive and negative gain: Differential sensitivity to waveform envelope and temporal fine-structure.
    Ananthakrishnan S; Krishnan A
    Hear Res; 2018 Sep; 367():113-123. PubMed ID: 30096491
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Case studies in neuroscience: subcortical origins of the frequency-following response.
    White-Schwoch T; Anderson S; Krizman J; Nicol T; Kraus N
    J Neurophysiol; 2019 Aug; 122(2):844-848. PubMed ID: 31268800
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.