BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 29764286)

  • 1. Environmental evaluation of flocculation efficiency in the separation of the microalgal biomass of Scenedesmus sp. cultivated in full-scale photobioreactors.
    Scherer MD; Filho FJCM; Oliveira AC; Selesu NFH; Ugaya CML; Mariano AB; Vargas JVC
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2018 Aug; 53(10):938-945. PubMed ID: 29764286
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of several flocculants for flocculating microalgae.
    Wu J; Liu J; Lin L; Zhang C; Li A; Zhu Y; Zhang Y
    Bioresour Technol; 2015 Dec; 197():495-501. PubMed ID: 26369279
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimal conditions of different flocculation methods for harvesting Scenedesmus sp. cultivated in an open-pond system.
    Chen L; Wang C; Wang W; Wei J
    Bioresour Technol; 2013 Apr; 133():9-15. PubMed ID: 23410531
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Harvesting of microalgal biomass: Efficient method for flocculation through pH modulation.
    Ummalyma SB; Mathew AK; Pandey A; Sukumaran RK
    Bioresour Technol; 2016 Aug; 213():216-221. PubMed ID: 27036330
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Understanding pH and ionic strength effects on aluminum sulfate-induced microalgae flocculation.
    Cui Y; Yuan W; Cheng J
    Appl Biochem Biotechnol; 2014 Aug; 173(7):1692-702. PubMed ID: 24840040
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of acid mine drainage for coagulation/flocculation of microalgal biomass.
    Salama ES; Kim JR; Ji MK; Cho DW; Abou-Shanab RAI; Kabra AN; Jeon BH
    Bioresour Technol; 2015 Jun; 186():232-237. PubMed ID: 25817034
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of natural pH variation to increase the flocculation of the marine microalgae Nannochloropsis oculata.
    Sales R; Abreu PC
    Appl Biochem Biotechnol; 2015 Feb; 175(4):2012-9. PubMed ID: 25432344
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Outdoor phycoremediation and biomass harvesting optimization of microalgae
    Gani P; Apandi NM; Mohamed Sunar N; Matias-Peralta HM; Kean Hua A; Mohd Dzulkifli SN; Parjo UK
    Int J Phytoremediation; 2022; 24(13):1431-1443. PubMed ID: 35130096
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microalgae
    Zhu L; Li Z; Hiltunen E
    Biotechnol Biofuels; 2018; 11():183. PubMed ID: 29988300
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluating the harvesting efficiency of inorganic coagulants on native microalgal consortium enriched with human urine.
    Behera B; Nageshwari K; Darshini M; Balasubramanian P
    Water Sci Technol; 2020 Sep; 82(6):1217-1226. PubMed ID: 33055411
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Urban wastewater photobiotreatment with microalgae in a continuously operated photobioreactor: growth, nutrient removal kinetics and biomass coagulation-flocculation.
    Mennaa FZ; Arbib Z; Perales JA
    Environ Technol; 2019 Jan; 40(3):342-355. PubMed ID: 29098948
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental studies on zeta potential of flocculants for harvesting of algae.
    Pandey A; Pathak VV; Kothari R; Black PN; Tyagi VV
    J Environ Manage; 2019 Feb; 231():562-569. PubMed ID: 30388653
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flocculation optimization of microalga Nannochloropsis oculata.
    Shen Y; Cui Y; Yuan W
    Appl Biochem Biotechnol; 2013 Apr; 169(7):2049-63. PubMed ID: 23361974
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Green coagulants recovering Scenedesmus obliquus: An optimization study.
    Dias A; Borges AC; Rosa AP; Martins MA
    Chemosphere; 2021 Jan; 262():127881. PubMed ID: 32795709
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of operating conditions for sustainable harvesting of microalgal biomass applying electrochemical method using non sacrificial electrodes.
    Misra R; Guldhe A; Singh P; Rawat I; Stenström TA; Bux F
    Bioresour Technol; 2015 Jan; 176():1-7. PubMed ID: 25460977
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metal-based flocculation to harvest microalgae: a look beyond separation efficiency.
    Rossi S; Visigalli S; Castillo Cascino F; Mantovani M; Mezzanotte V; Parati K; Canziani R; Turolla A; Ficara E
    Sci Total Environ; 2021 Dec; 799():149395. PubMed ID: 34426344
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Charge-tunable polymers as reversible and recyclable flocculants for the dewatering of microalgae.
    Morrissey KL; He C; Wong MH; Zhao X; Chapman RZ; Bender SL; Prevatt WD; Stoykovich MP
    Biotechnol Bioeng; 2015 Jan; 112(1):74-83. PubMed ID: 25060233
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Methods coagulation/flocculation and flocculation with ballast agent for effective harvesting of microalgae.
    Gorin KV; Sergeeva YE; Butylin VV; Komova AV; Pojidaev VM; Badranova GU; Shapovalova AA; Konova IA; Gotovtsev PM
    Bioresour Technol; 2015 Oct; 193():178-84. PubMed ID: 26133475
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced Harvesting of Chlorella vulgaris Using Combined Flocculants.
    Ma X; Zheng H; Zhou W; Liu Y; Chen P; Ruan R
    Appl Biochem Biotechnol; 2016 Oct; 180(4):791-804. PubMed ID: 27206558
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Instantaneous and reversible flocculation of Scenedesmus via Chitosan and Xanthan Gum complexation.
    Xu L; Cai Q; Liu X; Cai P; Tian C; Wu X; Wang C; Xiao B
    Bioresour Technol; 2023 Dec; 390():129899. PubMed ID: 37865151
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.