These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Ancestral synteny shared between distantly-related plant species from the asterid (Coffea canephora and Solanum Sp.) and rosid (Vitis vinifera) clades. Guyot R; Lefebvre-Pautigny F; Tranchant-Dubreuil C; Rigoreau M; Hamon P; Leroy T; Hamon S; Poncet V; Crouzillat D; de Kochko A BMC Genomics; 2012 Mar; 13():103. PubMed ID: 22433423 [TBL] [Abstract][Full Text] [Related]
3. Complete sequences of organelle genomes from the medicinal plant Rhazya stricta (Apocynaceae) and contrasting patterns of mitochondrial genome evolution across asterids. Park S; Ruhlman TA; Sabir JS; Mutwakil MH; Baeshen MN; Sabir MJ; Baeshen NA; Jansen RK BMC Genomics; 2014 May; 15(1):405. PubMed ID: 24884625 [TBL] [Abstract][Full Text] [Related]
4. Comparative sequence analyses indicate that Coffea (Asterids) and Vitis (Rosids) derive from the same paleo-hexaploid ancestral genome. Cenci A; Combes MC; Lashermes P Mol Genet Genomics; 2010 May; 283(5):493-501. PubMed ID: 20361338 [TBL] [Abstract][Full Text] [Related]
5. Reconstructing ancestral gene orders with duplications guided by synteny level genome reconstruction. Rajaraman A; Ma J BMC Bioinformatics; 2016 Nov; 17(Suppl 14):414. PubMed ID: 28185565 [TBL] [Abstract][Full Text] [Related]
6. Towards improved reconstruction of ancestral gene order in angiosperm phylogeny. Sankoff D; Zheng C; Wall PK; dePamphilis C; Leebens-Mack J; Albert VA J Comput Biol; 2009 Oct; 16(10):1353-67. PubMed ID: 19803735 [TBL] [Abstract][Full Text] [Related]
7. Detection of phytochrome-like genes from Rhazya stricta (Apocynaceae) using de novo genome assembly. Sabir JS; Baeshen NA; Shokry AM; Gadalla NO; Edris S; Mutwakil MH; Ramadan AM; Atef A; Al-Kordy MA; Abuzinadah OA; El-Domyati FM; Jansen RK; Bahieldin A C R Biol; 2013; 336(11-12):521-9. PubMed ID: 24296076 [TBL] [Abstract][Full Text] [Related]
8. Reconstruction of ancestral gene orders using intermediate genomes. Feijão P BMC Bioinformatics; 2015; 16 Suppl 14(Suppl 14):S3. PubMed ID: 26451811 [TBL] [Abstract][Full Text] [Related]
9. Fast ancestral gene order reconstruction of genomes with unequal gene content. Feijão P; Araujo E BMC Bioinformatics; 2016 Nov; 17(Suppl 14):413. PubMed ID: 28185578 [TBL] [Abstract][Full Text] [Related]
10. Analysis of local genome rearrangement improves resolution of ancestral genomic maps in plants. Rubert DP; Martinez FV; Stoye J; Doerr D BMC Genomics; 2020 Apr; 21(Suppl 2):273. PubMed ID: 32299356 [TBL] [Abstract][Full Text] [Related]
11. The nuclear genome of Rhazya stricta and the evolution of alkaloid diversity in a medically relevant clade of Apocynaceae. Sabir JS; Jansen RK; Arasappan D; Calderon V; Noutahi E; Zheng C; Park S; Sabir MJ; Baeshen MN; Hajrah NH; Khiyami MA; Baeshen NA; Obaid AY; Al-Malki AL; Sankoff D; El-Mabrouk N; Ruhlman TA Sci Rep; 2016 Sep; 6():33782. PubMed ID: 27653669 [TBL] [Abstract][Full Text] [Related]
12. Identification of genomic sites for CRISPR/Cas9-based genome editing in the Vitis vinifera genome. Wang Y; Liu X; Ren C; Zhong GY; Yang L; Li S; Liang Z BMC Plant Biol; 2016 Apr; 16():96. PubMed ID: 27098585 [TBL] [Abstract][Full Text] [Related]
13. Gene order in rosid phylogeny, inferred from pairwise syntenies among extant genomes. Zheng C; Sankoff D BMC Bioinformatics; 2012 Jun; 13 Suppl 10(Suppl 10):S9. PubMed ID: 22759433 [TBL] [Abstract][Full Text] [Related]
14. Fast and accurate phylogenetic reconstruction from high-resolution whole-genome data and a novel robustness estimator. Lin Y; Rajan V; Moret BM J Comput Biol; 2011 Sep; 18(9):1131-9. PubMed ID: 21899420 [TBL] [Abstract][Full Text] [Related]
15. Probabilistic modeling of the evolution of gene synteny within reconciled phylogenies. Semeria M; Tannier E; Guéguen L BMC Bioinformatics; 2015; 16 Suppl 14(Suppl 14):S5. PubMed ID: 26452018 [TBL] [Abstract][Full Text] [Related]
16. Comparison between a coffee single copy chromosomal region and Arabidopsis duplicated counterparts evidenced high level synteny between the coffee genome and the ancestral Arabidopsis genome. Mahé L; Combes MC; Lashermes P Plant Mol Biol; 2007 Aug; 64(6):699-711. PubMed ID: 17551672 [TBL] [Abstract][Full Text] [Related]
17. GenomicusPlants: a web resource to study genome evolution in flowering plants. Louis A; Murat F; Salse J; Crollius HR Plant Cell Physiol; 2015 Jan; 56(1):e4. PubMed ID: 25432975 [TBL] [Abstract][Full Text] [Related]
18. Substantial genome synteny preservation among woody angiosperm species: comparative genomics of Chinese chestnut (Castanea mollissima) and plant reference genomes. Staton M; Zhebentyayeva T; Olukolu B; Fang GC; Nelson D; Carlson JE; Abbott AG BMC Genomics; 2015 Oct; 16():744. PubMed ID: 26438416 [TBL] [Abstract][Full Text] [Related]
19. The coffee genome hub: a resource for coffee genomes. Dereeper A; Bocs S; Rouard M; Guignon V; Ravel S; Tranchant-Dubreuil C; Poncet V; Garsmeur O; Lashermes P; Droc G Nucleic Acids Res; 2015 Jan; 43(Database issue):D1028-35. PubMed ID: 25392413 [TBL] [Abstract][Full Text] [Related]
20. Evolutionary and expression analysis of a MADS-box gene superfamily involved in ovule development of seeded and seedless grapevines. Wang L; Yin X; Cheng C; Wang H; Guo R; Xu X; Zhao J; Zheng Y; Wang X Mol Genet Genomics; 2015 Jun; 290(3):825-46. PubMed ID: 25429734 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]