BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 29764765)

  • 21. Conversion of crude Jatropha curcas seed oil into biodiesel using liquid recombinant Candida rugosa lipase isozymes.
    Kuo TC; Shaw JF; Lee GC
    Bioresour Technol; 2015 Sep; 192():54-9. PubMed ID: 26011691
    [TBL] [Abstract][Full Text] [Related]  

  • 22. NMR techniques for determination of lipid content in microalgal biomass and their use in monitoring the cultivation with biodiesel potential.
    Sarpal AS; Teixeira CM; Silva PR; da Costa Monteiro TV; da Silva JI; da Cunha VS; Daroda RJ
    Appl Microbiol Biotechnol; 2016 Mar; 100(5):2471-85. PubMed ID: 26615401
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chlorella vulgaris cultivation in pilot-scale to treat real swine wastewater and mitigate carbon dioxide for sustainable biodiesel production by direct enzymatic transesterification.
    Xie D; Ji X; Zhou Y; Dai J; He Y; Sun H; Guo Z; Yang Y; Zheng X; Chen B
    Bioresour Technol; 2022 Apr; 349():126886. PubMed ID: 35217166
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of different biomass drying and lipid extraction methods on algal lipid yield, fatty acid profile, and biodiesel quality.
    Hussain J; Liu Y; Lopes WA; Druzian JI; Souza CO; Carvalho GC; Nascimento IA; Liao W
    Appl Biochem Biotechnol; 2015 Mar; 175(6):3048-57. PubMed ID: 25588528
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Acid-catalyzed hot-water extraction of lipids from Chlorella vulgaris.
    Park JY; Oh YK; Lee JS; Lee K; Jeong MJ; Choi SA
    Bioresour Technol; 2014 Feb; 153():408-12. PubMed ID: 24393546
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The role of co-solvents in improving the direct transesterification of wet microalgal biomass under supercritical condition.
    Abedini Najafabadi H; Vossoughi M; Pazuki G
    Bioresour Technol; 2015 Oct; 193():90-6. PubMed ID: 26117240
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Plasma Functionalized Multiwalled Carbon Nanotubes for Immobilization of Candida antarctica Lipase B: Production of Biodiesel from Methanolysis of Rapeseed Oil.
    Rastian Z; Khodadadi AA; Guo Z; Vahabzadeh F; Mortazavi Y
    Appl Biochem Biotechnol; 2016 Mar; 178(5):974-89. PubMed ID: 26588921
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparative assessment of various lipid extraction protocols and optimization of transesterification process for microalgal biodiesel production.
    Mandal S; Patnaik R; Singh AK; Mallick N
    Environ Technol; 2013; 34(13-16):2009-18. PubMed ID: 24350454
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhanced isolation of lipids from microalgal biomass with high water content for biodiesel production.
    Alam MA; Wu J; Xu J; Wang Z
    Bioresour Technol; 2019 Nov; 291():121834. PubMed ID: 31371157
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biodiesel production with immobilized lipase: A review.
    Tan T; Lu J; Nie K; Deng L; Wang F
    Biotechnol Adv; 2010; 28(5):628-34. PubMed ID: 20580809
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biocatalytic methanolysis activities of cross-linked protein-coated microcrystalline lipase toward esterification/transesterification of relevant palm products.
    Raita M; Laosiripojana N; Champreda V
    Enzyme Microb Technol; 2015 Mar; 70():28-34. PubMed ID: 25659629
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Glymes as new solvents for lipase activation and biodiesel preparation.
    Tang S; Jones CL; Zhao H
    Bioresour Technol; 2013 Feb; 129():667-71. PubMed ID: 23298774
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Chlorella vulgaris as a green biofuel factory: Comparison between biodiesel, biogas and combustible biomass production.
    Sakarika M; Kornaros M
    Bioresour Technol; 2019 Feb; 273():237-243. PubMed ID: 30447625
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Scaling-up the synthesis of myristate glucose ester catalyzed by a CALB-displaying Pichia pastoris whole-cell biocatalyst.
    Guo D; Jin Z; Xu Y; Wang P; Lin Y; Han S; Zheng S
    Enzyme Microb Technol; 2015; 75-76():30-6. PubMed ID: 26047913
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ohmic heating pretreatment of algal slurry for production of biodiesel.
    Yodsuwan N; Kamonpatana P; Chisti Y; Sirisansaneeyakul S
    J Biotechnol; 2018 Feb; 267():71-78. PubMed ID: 29289547
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Production of biodiesel by immobilized Candida sp. lipase at high water content.
    Tan T; Nie K; Wang F
    Appl Biochem Biotechnol; 2006 Feb; 128(2):109-16. PubMed ID: 16484720
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Prediction of the solvent affecting site and the computational design of stable Candida antarctica lipase B in a hydrophilic organic solvent.
    Park HJ; Joo JC; Park K; Kim YH; Yoo YJ
    J Biotechnol; 2013 Feb; 163(3):346-52. PubMed ID: 23178554
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Continuous biodiesel production using in situ glycerol separation by membrane bioreactor system.
    Ko MJ; Park HJ; Hong SY; Yoo YJ
    Bioprocess Biosyst Eng; 2012 Jan; 35(1-2):69-75. PubMed ID: 21918839
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biodiesel Production Using Palm Oil with a MOF-Lipase B Biocatalyst from Candida Antarctica: A Kinetic and Thermodynamic Study.
    Giraldo L; Gómez-Granados F; Moreno-Piraján JC
    Int J Mol Sci; 2023 Jun; 24(13):. PubMed ID: 37445919
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Noncatalytic transformation of the crude lipid of ChlorellaI vulgaris into fatty acid methyl ester (FAME) with charcoal via a thermo-chemical process.
    Kwon EE; Jeon YJ; Yi H
    Bioresour Technol; 2013 Feb; 129():672-5. PubMed ID: 23294646
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.