BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

368 related articles for article (PubMed ID: 29764987)

  • 1. Rapid and Dynamic Alternative Splicing Impacts the Arabidopsis Cold Response Transcriptome.
    Calixto CPG; Guo W; James AB; Tzioutziou NA; Entizne JC; Panter PE; Knight H; Nimmo HG; Zhang R; Brown JWS
    Plant Cell; 2018 Jul; 30(7):1424-1444. PubMed ID: 29764987
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cold-Dependent Expression and Alternative Splicing of Arabidopsis Long Non-coding RNAs.
    Calixto CPG; Tzioutziou NA; James AB; Hornyik C; Guo W; Zhang R; Nimmo HG; Brown JWS
    Front Plant Sci; 2019; 10():235. PubMed ID: 30891054
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome-wide survey of cold stress regulated alternative splicing in Arabidopsis thaliana with tiling microarray.
    Leviatan N; Alkan N; Leshkowitz D; Fluhr R
    PLoS One; 2013; 8(6):e66511. PubMed ID: 23776682
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid transcriptional and metabolic regulation of the deacclimation process in cold acclimated Arabidopsis thaliana.
    Pagter M; Alpers J; Erban A; Kopka J; Zuther E; Hincha DK
    BMC Genomics; 2017 Sep; 18(1):731. PubMed ID: 28915789
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Arabidopsis cold-responsive transcriptome and its regulation by ICE1.
    Lee BH; Henderson DA; Zhu JK
    Plant Cell; 2005 Nov; 17(11):3155-75. PubMed ID: 16214899
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alternative mRNA processing increases the complexity of microRNA-based gene regulation in Arabidopsis.
    Yang X; Zhang H; Li L
    Plant J; 2012 May; 70(3):421-31. PubMed ID: 22247970
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alternative splicing: enhancing ability to cope with stress via transcriptome plasticity.
    Mastrangelo AM; Marone D; Laidò G; De Leonardis AM; De Vita P
    Plant Sci; 2012 Apr; 185-186():40-9. PubMed ID: 22325865
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Overexpression of a novel cold-responsive transcript factor LcFIN1 from sheepgrass enhances tolerance to low temperature stress in transgenic plants.
    Gao Q; Li X; Jia J; Zhao P; Liu P; Liu Z; Ge L; Chen S; Qi D; Deng B; Lee BH; Liu G; Cheng L
    Plant Biotechnol J; 2016 Mar; 14(3):861-74. PubMed ID: 26234381
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interplay between cold-responsive gene regulation, metabolism and RNA processing during plant cold acclimation.
    Zhu J; Dong CH; Zhu JK
    Curr Opin Plant Biol; 2007 Jun; 10(3):290-5. PubMed ID: 17468037
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis.
    Vogel JT; Zarka DG; Van Buskirk HA; Fowler SG; Thomashow MF
    Plant J; 2005 Jan; 41(2):195-211. PubMed ID: 15634197
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential SAGE analysis in Arabidopsis uncovers increased transcriptome complexity in response to low temperature.
    Robinson SJ; Parkin IA
    BMC Genomics; 2008 Sep; 9():434. PubMed ID: 18808718
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ectopic expression of ABI3 gene enhances freezing tolerance in response to abscisic acid and low temperature in Arabidopsis thaliana.
    Tamminen I; Mäkelä P; Heino P; Palva ET
    Plant J; 2001 Jan; 25(1):1-8. PubMed ID: 11169177
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of alternative splicing events regulated by an Arabidopsis serine/arginine-like protein, atSR45a, in response to high-light stress using a tiling array.
    Yoshimura K; Mori T; Yokoyama K; Koike Y; Tanabe N; Sato N; Takahashi H; Maruta T; Shigeoka S
    Plant Cell Physiol; 2011 Oct; 52(10):1786-805. PubMed ID: 21862516
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison of the low temperature transcriptomes of two tomato genotypes that differ in freezing tolerance: Solanum lycopersicum and Solanum habrochaites.
    Chen H; Chen X; Chen D; Li J; Zhang Y; Wang A
    BMC Plant Biol; 2015 Jun; 15():132. PubMed ID: 26048292
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alternative splicing at NAGNAG acceptors in Arabidopsis thaliana SR and SR-related protein-coding genes.
    Schindler S; Szafranski K; Hiller M; Ali GS; Palusa SG; Backofen R; Platzer M; Reddy AS
    BMC Genomics; 2008 Apr; 9():159. PubMed ID: 18402682
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation.
    Gilmour SJ; Sebolt AM; Salazar MP; Everard JD; Thomashow MF
    Plant Physiol; 2000 Dec; 124(4):1854-65. PubMed ID: 11115899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A high resolution map of the Arabidopsis thaliana developmental transcriptome based on RNA-seq profiling.
    Klepikova AV; Kasianov AS; Gerasimov ES; Logacheva MD; Penin AA
    Plant J; 2016 Dec; 88(6):1058-1070. PubMed ID: 27549386
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptome Survey of the Contribution of Alternative Splicing to Proteome Diversity in Arabidopsis thaliana.
    Yu H; Tian C; Yu Y; Jiao Y
    Mol Plant; 2016 May; 9(5):749-752. PubMed ID: 26742955
    [No Abstract]   [Full Text] [Related]  

  • 19. Comparative analysis of gene expression under cold acclimation, deacclimation and reacclimation in Arabidopsis.
    Byun YJ; Koo MY; Joo HJ; Ha-Lee YM; Lee DH
    Physiol Plant; 2014 Oct; 152(2):256-74. PubMed ID: 24494996
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Histone H3 lysine 36 methylation affects temperature-induced alternative splicing and flowering in plants.
    Pajoro A; Severing E; Angenent GC; Immink RGH
    Genome Biol; 2017 Jun; 18(1):102. PubMed ID: 28566089
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.