BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 29765148)

  • 1. Cancer subtype identification using somatic mutation data.
    Kuijjer ML; Paulson JN; Salzman P; Ding W; Quackenbush J
    Br J Cancer; 2018 May; 118(11):1492-1501. PubMed ID: 29765148
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Utilizing somatic mutation data from numerous studies for cancer research: proof of concept and applications.
    Amar D; Izraeli S; Shamir R
    Oncogene; 2017 Jun; 36(24):3375-3383. PubMed ID: 28092680
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pan-cancer integrative analysis of whole-genome De novo somatic point mutations reveals 17 cancer types.
    Ghareyazi A; Kazemi A; Hamidieh K; Dashti H; Tahaei MS; Rabiee HR; Alinejad-Rokny H; Dehzangi I
    BMC Bioinformatics; 2022 Jul; 23(1):298. PubMed ID: 35879674
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Frequent mutations in acetylation and ubiquitination sites suggest novel driver mechanisms of cancer.
    Narayan S; Bader GD; Reimand J
    Genome Med; 2016 May; 8(1):55. PubMed ID: 27175787
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Binning somatic mutations based on biological knowledge for predicting survival: an application in renal cell carcinoma.
    Kim D; Li R; Dudek SM; Wallace JR; Ritchie MD
    Pac Symp Biocomput; 2015; ():96-107. PubMed ID: 25592572
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pan-cancer network analysis identifies combinations of rare somatic mutations across pathways and protein complexes.
    Leiserson MD; Vandin F; Wu HT; Dobson JR; Eldridge JV; Thomas JL; Papoutsaki A; Kim Y; Niu B; McLellan M; Lawrence MS; Gonzalez-Perez A; Tamborero D; Cheng Y; Ryslik GA; Lopez-Bigas N; Getz G; Ding L; Raphael BJ
    Nat Genet; 2015 Feb; 47(2):106-14. PubMed ID: 25501392
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mutational concordance analysis provides supportive information for double cancer diagnosis.
    Hatakeyama K; Nagashima T; Notsu A; Ohshima K; Ohnami S; Ohnami S; Shimoda Y; Naruoka A; Maruyama K; Iizuka A; Ashizawa T; Kenmotsu H; Mochizuki T; Urakami K; Akiyama Y; Yamaguchi K
    BMC Cancer; 2021 Feb; 21(1):181. PubMed ID: 33607950
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Network-based stratification analysis of 13 major cancer types using mutations in panels of cancer genes.
    Zhong X; Yang H; Zhao S; Shyr Y; Li B
    BMC Genomics; 2015; 16 Suppl 7(Suppl 7):S7. PubMed ID: 26099277
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Network based stratification of major cancers by integrating somatic mutation and gene expression data.
    He Z; Zhang J; Yuan X; Liu Z; Liu B; Tuo S; Liu Y
    PLoS One; 2017; 12(5):e0177662. PubMed ID: 28520777
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spectrum of EGFR aberrations and potential clinical implications: insights from integrative pan-cancer analysis.
    Liu H; Zhang B; Sun Z
    Cancer Commun (Lond); 2020 Jan; 40(1):43-59. PubMed ID: 32067422
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discovery of mutated subnetworks associated with clinical data in cancer.
    Vandin F; Clay P; Upfal E; Raphael BJ
    Pac Symp Biocomput; 2012; ():55-66. PubMed ID: 22174262
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Somatic synonymous mutations in regulatory elements contribute to the genetic aetiology of melanoma.
    Zhang D; Xia J
    BMC Med Genomics; 2020 Apr; 13(Suppl 5):43. PubMed ID: 32241263
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A pan-kidney cancer study identifies subtype specific perturbations on pathways with potential drivers in renal cell carcinoma.
    Zhan X; Liu Y; Yu CY; Wang TF; Zhang J; Ni D; Huang K
    BMC Med Genomics; 2020 Dec; 13(Suppl 11):190. PubMed ID: 33371886
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Age-related somatic mutations in the cancer genome.
    Milholland B; Auton A; Suh Y; Vijg J
    Oncotarget; 2015 Sep; 6(28):24627-35. PubMed ID: 26384365
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genomic data integration in chronic lymphocytic leukemia.
    Fernández-Martínez JL; deAndrés-Galiana EJ; Sonis ST
    J Gene Med; 2017 Jan; 19(1-2):. PubMed ID: 27928896
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recurrent somatic mutations reveal new insights into consequences of mutagenic processes in cancer.
    Stobbe MD; Thun GA; Diéguez-Docampo A; Oliva M; Whalley JP; Raineri E; Gut IG
    PLoS Comput Biol; 2019 Nov; 15(11):e1007496. PubMed ID: 31765368
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hotspot mutations delineating diverse mutational signatures and biological utilities across cancer types.
    Chen T; Wang Z; Zhou W; Chong Z; Meric-Bernstam F; Mills GB; Chen K
    BMC Genomics; 2016 Jun; 17 Suppl 2(Suppl 2):394. PubMed ID: 27356755
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational approaches for the identification of cancer genes and pathways.
    Dimitrakopoulos CM; Beerenwinkel N
    Wiley Interdiscip Rev Syst Biol Med; 2017 Jan; 9(1):. PubMed ID: 27863091
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Targeted next-generation sequencing identifies clinically relevant somatic mutations in a large cohort of inflammatory breast cancer.
    Liang X; Vacher S; Boulai A; Bernard V; Baulande S; Bohec M; Bièche I; Lerebours F; Callens C
    Breast Cancer Res; 2018 Aug; 20(1):88. PubMed ID: 30086764
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GLAD: a mixed-membership model for heterogeneous tumor subtype classification.
    Saddiki H; McAuliffe J; Flaherty P
    Bioinformatics; 2015 Jan; 31(2):225-32. PubMed ID: 25266225
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.