These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 29765663)
1. Categorizing experience-based foraging plasticity in mites: age dependency, primacy effects and memory persistence. Schausberger P; Davaasambuu U; Saussure S; Christiansen IC R Soc Open Sci; 2018 Apr; 5(4):172110. PubMed ID: 29765663 [TBL] [Abstract][Full Text] [Related]
2. Benefit-cost Trade-offs of Early Learning in Foraging Predatory Mites Amblyseius Swirskii. Christiansen IC; Szin S; Schausberger P Sci Rep; 2016 Mar; 6():23571. PubMed ID: 27006149 [TBL] [Abstract][Full Text] [Related]
3. Learned predators enhance biological control via organizational upward and trophic top-down cascades. Schausberger P; Çekin D; Litin A J Appl Ecol; 2021 Jan; 58(1):158-166. PubMed ID: 33536685 [TBL] [Abstract][Full Text] [Related]
4. Non-associative versus associative learning by foraging predatory mites. Schausberger P; Peneder S BMC Ecol; 2017 Jan; 17(1):2. PubMed ID: 28088215 [TBL] [Abstract][Full Text] [Related]
5. Predatory interactions between prey affect patch selection by predators. Choh Y; Sabelis MW; Janssen A Behav Ecol Sociobiol; 2017; 71(4):66. PubMed ID: 28356611 [TBL] [Abstract][Full Text] [Related]
6. Juvenile prey induce antipredator behaviour in adult predators. de Almeida ÂA; Janssen A Exp Appl Acarol; 2013 Mar; 59(3):275-82. PubMed ID: 22923143 [TBL] [Abstract][Full Text] [Related]
7. Transgenerational loss and recovery of early learning ability in foraging predatory mites. Reichert MB; Christiansen IC; Seiter M; Schausberger P Exp Appl Acarol; 2017 Mar; 71(3):243-258. PubMed ID: 28409405 [TBL] [Abstract][Full Text] [Related]
8. Intra-guild vs extra-guild prey: effect on predator fitness and preference of Amblyseius swirskii (Athias-Henriot) and Neoseiulus cucumeris (Oudemans) (Acari: Phytoseiidae). Buitenhuis R; Shipp L; Scott-Dupree C Bull Entomol Res; 2010 Apr; 100(2):167-73. PubMed ID: 19419591 [TBL] [Abstract][Full Text] [Related]
9. Behavioural responses of two-spotted spider mites induced by predator-borne and prey-borne cues. Gyuris E; Szép E; Kontschán J; Hettyey A; Tóth Z Behav Processes; 2017 Nov; 144():100-106. PubMed ID: 28882653 [TBL] [Abstract][Full Text] [Related]
10. Prey preference of the predatory mite, Amblyseius swirskii between first instar western flower thrips Frankliniella occidentalis and nymphs of the twospotted spider mite Tetranychus urticae. Xu X; Enkegaard A J Insect Sci; 2010; 10():149. PubMed ID: 21070175 [TBL] [Abstract][Full Text] [Related]
11. Intraguild interactions among three spider mite predators: predation preference and effects on juvenile development and oviposition. Rahmani H; Daneshmandi A; Walzer A Exp Appl Acarol; 2015 Dec; 67(4):493-505. PubMed ID: 26462926 [TBL] [Abstract][Full Text] [Related]
12. Social familiarity governs prey patch-exploitation, -leaving and inter-patch distribution of the group-living predatory mite Phytoseiulus persimilis. Zach GJ; Peneder S; Strodl MA; Schausberger P PLoS One; 2012; 7(8):e42889. PubMed ID: 22900062 [TBL] [Abstract][Full Text] [Related]
13. Sex-specific developmental plasticity of generalist and specialist predatory mites (Acari: Phytoseiidae) in response to food stress. Walzer A; Schausberger P Biol J Linn Soc Lond; 2011 Mar; 102(3):650-660. PubMed ID: 22003259 [TBL] [Abstract][Full Text] [Related]
14. Prey and Pollen Food Choice Depends on Previous Diet in an Omnivorous Predatory Mite. Schuldiner-Harpaz T; Coll M; Weintraub PG Environ Entomol; 2016 Aug; 45(4):995-8. PubMed ID: 27271945 [TBL] [Abstract][Full Text] [Related]
15. A comprehensive picture of foraging strategies of Neoseiulus cucumeris and Amblyseius swirskii on western flower thrips. Dalir S; Hajiqanbar H; Fathipour Y; Khanamani M Pest Manag Sci; 2021 Dec; 77(12):5418-5429. PubMed ID: 34329533 [TBL] [Abstract][Full Text] [Related]
16. Ontogenetic shifts in intraguild predation on thrips by phytoseiid mites: the relevance of body size and diet specialization. Walzer A; Paulus HF; Schausberger P Bull Entomol Res; 2004 Dec; 94(6):577-84. PubMed ID: 15541196 [TBL] [Abstract][Full Text] [Related]
17. Heat waves affect prey and predators differently via developmental plasticity: who may benefit most from global warming? Tscholl T; Nachman G; Spangl B; Walzer A Pest Manag Sci; 2022 Mar; 78(3):1099-1108. PubMed ID: 34786827 [TBL] [Abstract][Full Text] [Related]
18. Predator-prey role reversals, juvenile experience and adult antipredator behaviour. Choh Y; Ignacio M; Sabelis MW; Janssen A Sci Rep; 2012; 2():728. PubMed ID: 23061011 [TBL] [Abstract][Full Text] [Related]
19. Prey preference, intraguild predation and population dynamics of an arthropod food web on plants. Venzon M; Janssen A; Sabelis MW Exp Appl Acarol; 2001; 25(10-11):785-808. PubMed ID: 12455871 [TBL] [Abstract][Full Text] [Related]
20. Supplemental food that supports both predator and pest: a risk for biological control? Leman A; Messelink GJ Exp Appl Acarol; 2015 Apr; 65(4):511-24. PubMed ID: 25349063 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]