These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 2976600)

  • 1. On the intermediacy of carboxyphosphate in biotin-dependent carboxylations.
    Ogita T; Knowles JR
    Biochemistry; 1988 Oct; 27(21):8028-33. PubMed ID: 2976600
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbon-13 and deuterium isotope effects on the catalytic reactions of biotin carboxylase.
    Tipton PA; Cleland WW
    Biochemistry; 1988 Jun; 27(12):4325-31. PubMed ID: 3048384
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catalytic mechanism of biotin carboxylase: steady-state kinetic investigations.
    Tipton PA; Cleland WW
    Biochemistry; 1988 Jun; 27(12):4317-25. PubMed ID: 2971391
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural Analysis of Substrate, Reaction Intermediate, and Product Binding in Haemophilus influenzae Biotin Carboxylase.
    Broussard TC; Pakhomova S; Neau DB; Bonnot R; Waldrop GL
    Biochemistry; 2015 Jun; 54(24):3860-70. PubMed ID: 26020841
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ATPase activity of biotin carboxylase provides evidence for initial activation of HCO3- by ATP in the carboxylation of biotin.
    Climent I; Rubio V
    Arch Biochem Biophys; 1986 Dec; 251(2):465-70. PubMed ID: 2948446
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of biotin carboxylase by a reaction intermediate analog: implications for the kinetic mechanism.
    Blanchard CZ; Amspacher D; Strongin R; Waldrop GL
    Biochem Biophys Res Commun; 1999 Dec; 266(2):466-71. PubMed ID: 10600526
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic characterization of mutations found in propionic acidemia and methylcrotonylglycinuria: evidence for cooperativity in biotin carboxylase.
    Sloane V; Waldrop GL
    J Biol Chem; 2004 Apr; 279(16):15772-8. PubMed ID: 14960587
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutations at four active site residues of biotin carboxylase abolish substrate-induced synergism by biotin.
    Blanchard CZ; Lee YM; Frantom PA; Waldrop GL
    Biochemistry; 1999 Mar; 38(11):3393-400. PubMed ID: 10079084
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanistic investigations of Escherichia coli cytidine-5'-triphosphate synthetase. Detection of an intermediate by positional isotope exchange experiments.
    von der Saal W; Anderson PM; Villafranca JJ
    J Biol Chem; 1985 Dec; 260(28):14993-7. PubMed ID: 2933396
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The utility of molecular dynamics simulations for understanding site-directed mutagenesis of glycine residues in biotin carboxylase.
    Bordelon T; Nilsson Lill SO; Waldrop GL
    Proteins; 2009 Mar; 74(4):808-19. PubMed ID: 18704941
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Function of Escherichia coli biotin carboxylase requires catalytic activity of both subunits of the homodimer.
    Janiyani K; Bordelon T; Waldrop GL; Cronan JE
    J Biol Chem; 2001 Aug; 276(32):29864-70. PubMed ID: 11390406
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Complex formation and regulation of Escherichia coli acetyl-CoA carboxylase.
    Broussard TC; Price AE; Laborde SM; Waldrop GL
    Biochemistry; 2013 May; 52(19):3346-57. PubMed ID: 23594205
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structure of biotin carboxylase in complex with substrates and implications for its catalytic mechanism.
    Chou CY; Yu LP; Tong L
    J Biol Chem; 2009 Apr; 284(17):11690-7. PubMed ID: 19213731
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Site-directed mutagenesis of ATP binding residues of biotin carboxylase. Insight into the mechanism of catalysis.
    Sloane V; Blanchard CZ; Guillot F; Waldrop GL
    J Biol Chem; 2001 Jul; 276(27):24991-6. PubMed ID: 11346647
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insights into the mechanism and regulation of pyruvate carboxylase by characterisation of a biotin-deficient mutant of the Bacillus thermodenitrificans enzyme.
    Adina-Zada A; Jitrapakdee S; Surinya KH; McIldowie MJ; Piggott MJ; Cleland WW; Wallace JC; Attwood PV
    Int J Biochem Cell Biol; 2008; 40(9):1743-52. PubMed ID: 18272421
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel insights into the biotin carboxylase domain reactions of pyruvate carboxylase from Rhizobium etli.
    Zeczycki TN; Menefee AL; Adina-Zada A; Jitrapakdee S; Surinya KH; Wallace JC; Attwood PV; St Maurice M; Cleland WW
    Biochemistry; 2011 Nov; 50(45):9724-37. PubMed ID: 21957995
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Positional isotope exchange and kinetic experiments with Escherichia coli guanosine-5'-monophosphate synthetase.
    von der Saal W; Crysler CS; Villafranca JJ
    Biochemistry; 1985 Sep; 24(20):5343-50. PubMed ID: 3907701
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of acetyl CoA on the pre-steady-state kinetics of the biotin carboxylation reaction of pyruvate carboxylase.
    Legge GB; Branson JP; Attwood PV
    Biochemistry; 1996 Mar; 35(12):3849-56. PubMed ID: 8620009
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isolation and chemistry of the mixed anhydride intermediate in the reaction catalyzed by dethiobiotin synthetase.
    Gibson KJ
    Biochemistry; 1997 Jul; 36(28):8474-8. PubMed ID: 9214291
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular cloning and characterization of the cDNA coding for the biotin-containing subunit of 3-methylcrotonoyl-CoA carboxylase: identification of the biotin carboxylase and biotin-carrier domains.
    Song J; Wurtele ES; Nikolau BJ
    Proc Natl Acad Sci U S A; 1994 Jun; 91(13):5779-83. PubMed ID: 8016064
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.