These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 29766169)

  • 1. A new anthraquinoid ligand for the iron-catalyzed hydrosilylation of carbonyl compounds at room temperature: new insights and kinetics.
    Raya-Barón Á; Galdeano-Ruano CP; Oña-Burgos P; Rodríguez-Diéguez A; Langer R; López-Ruiz R; Romero-González R; Kuzu I; Fernández I
    Dalton Trans; 2018 May; 47(21):7272-7281. PubMed ID: 29766169
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Emergence of Manganese-Based Carbonyl Hydrosilylation Catalysts.
    Trovitch RJ
    Acc Chem Res; 2017 Nov; 50(11):2842-2852. PubMed ID: 29120607
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Pentacoordinate Mn(II) Precatalyst That Exhibits Notable Aldehyde and Ketone Hydrosilylation Turnover Frequencies.
    Ghosh C; Mukhopadhyay TK; Flores M; Groy TL; Trovitch RJ
    Inorg Chem; 2015 Nov; 54(21):10398-406. PubMed ID: 26480233
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cesium carbonate catalyzed chemoselective hydrosilylation of aldehydes and ketones under solvent-free conditions.
    Zhao M; Xie W; Cui C
    Chemistry; 2014 Jul; 20(30):9259-62. PubMed ID: 24989934
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nickel and iron pincer complexes as catalysts for the reduction of carbonyl compounds.
    Chakraborty S; Bhattacharya P; Dai H; Guan H
    Acc Chem Res; 2015 Jul; 48(7):1995-2003. PubMed ID: 26098431
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrosilylation of aldehydes and ketones catalyzed by hydrido iron complexes bearing imine ligands.
    Zuo Z; Sun H; Wang L; Li X
    Dalton Trans; 2014 Aug; 43(30):11716-22. PubMed ID: 24953036
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanistic Investigation of Bis(imino)pyridine Manganese Catalyzed Carbonyl and Carboxylate Hydrosilylation.
    Mukhopadhyay TK; Rock CL; Hong M; Ashley DC; Groy TL; Baik MH; Trovitch RJ
    J Am Chem Soc; 2017 Apr; 139(13):4901-4915. PubMed ID: 28282136
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Designing the "search pathway" in the development of a new class of highly efficient stereoselective hydrosilylation catalysts.
    César V; Bellemin-Laponnaz S; Wadepohl H; Gade LH
    Chemistry; 2005 Apr; 11(9):2862-73. PubMed ID: 15744702
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbonyl and ester C-O bond hydrosilylation using κ
    Rock CL; Groy TL; Trovitch RJ
    Dalton Trans; 2018 Jul; 47(26):8807-8816. PubMed ID: 29922802
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of silylene ligands on the performance of carbonyl hydrosilylation catalyzed by cobalt phosphine complexes.
    Fan Q; Du X; Yang W; Li Q; Huang W; Sun H; Hinz A; Li X
    Dalton Trans; 2023 May; 52(20):6712-6721. PubMed ID: 37129049
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dioxomolybdenum(VI) complexes as catalysts for the hydrosilylation of aldehydes and ketones.
    Reis PM; Romão CC; Royo B
    Dalton Trans; 2006 Apr; (15):1842-6. PubMed ID: 16585971
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of the Iron(II)-Catalyzed Hydrosilylation of Ketones: Activation of Iron Carboxylate Precatalysts and Reaction Pathways of the Active Catalyst.
    Bleith T; Gade LH
    J Am Chem Soc; 2016 Apr; 138(14):4972-83. PubMed ID: 27013140
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The key role of the intermolecular pi-pi interactions in the presence of spin crossover in neutral [Fe(abpt)2A2] complexes (A = terminal monoanion N ligand).
    Dupouy G; Marchivie M; Triki S; Sala-Pala J; Salaün JY; Gómez-García CJ; Guionneau P
    Inorg Chem; 2008 Oct; 47(19):8921-31. PubMed ID: 18686945
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fe(II) Spin Transition Materials Including an Amino-Ester 1,2,4-Triazole Derivative, Operating at, below, and above Room Temperature.
    Dîrtu MM; Naik AD; Rotaru A; Spinu L; Poelman D; Garcia Y
    Inorg Chem; 2016 May; 55(9):4278-95. PubMed ID: 27104913
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorous hydrosilylation.
    Carreira M; Contel M
    Top Curr Chem; 2012; 308():247-73. PubMed ID: 21952841
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Hydrosilylation and Cyanosilylation of Ketones Catalyzed using Metal Borohydrides.
    Liu Y; Zhang D; Ma Y; Li J; Bai Y; Peng J
    Curr Org Synth; 2019; 16(2):276-282. PubMed ID: 31975676
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spin-State Tuning at Pseudo-tetrahedral d(6) Ions: Spin Crossover in [BP3]Fe(II)-X Complexes.
    Creutz SE; Peters JC
    Inorg Chem; 2016 Apr; 55(8):3894-906. PubMed ID: 27042863
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spin effect on redox acceleration and regioselectivity in Fe-catalyzed alkyne hydrosilylation.
    He P; Hu MY; Li JH; Qiao TZ; Lu YL; Zhu SF
    Natl Sci Rev; 2024 Feb; 11(2):nwad324. PubMed ID: 38314400
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrosilylation of Ketones Catalyzed by Iron Iminobipyridine Complexes and Accelerated by Lewis Bases.
    Kobayashi K; Izumori Y; Taguchi D; Nakazawa H
    Chempluschem; 2019 Aug; 84(8):1094-1102. PubMed ID: 31943952
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spin crossover in Fe(II) and Co(II) complexes with the same click-derived tripodal ligand.
    Schweinfurth D; Demeshko S; Hohloch S; Steinmetz M; Brandenburg JG; Dechert S; Meyer F; Grimme S; Sarkar B
    Inorg Chem; 2014 Aug; 53(16):8203-12. PubMed ID: 25090159
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.