BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 29766242)

  • 21. Targeted knock-in of an scFv-Fc antibody gene into the hprt locus of Chinese hamster ovary cells using CRISPR/Cas9 and CRIS-PITCh systems.
    Kawabe Y; Komatsu S; Komatsu S; Murakami M; Ito A; Sakuma T; Nakamura T; Yamamoto T; Kamihira M
    J Biosci Bioeng; 2018 May; 125(5):599-605. PubMed ID: 29295784
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification of hyperosmotic stress-responsive genes in Chinese hamster ovary cells via genome-wide virus-free CRISPR/Cas9 screening.
    Kim SH; Shin S; Baek M; Xiong K; Karottki KJC; Hefzi H; Grav LM; Pedersen LE; Kildegaard HF; Lewis NE; Lee JS; Lee GM
    Metab Eng; 2023 Nov; 80():66-77. PubMed ID: 37709005
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Stable overexpression of mutated PTEN in Chinese hamster ovary cells enhances their performance and therapeutic antibody production.
    Zhou Q; Zhang Y; Lu X; Wang C; Pei X; Lu Y; Cao C; Xu C; Zhang B
    Biotechnol J; 2021 Sep; 16(9):e2000623. PubMed ID: 34053183
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A CRISPR/Cas9 based engineering strategy for overexpression of multiple genes in Chinese hamster ovary cells.
    Eisenhut P; Klanert G; Weinguny M; Baier L; Jadhav V; Ivansson D; Borth N
    Metab Eng; 2018 Jul; 48():72-81. PubMed ID: 29852271
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Application of the CRISPR/Cas9 Gene Editing Method for Modulating Antibody Fucosylation in CHO Cells.
    Wang Q; Chung CY; Rosenberg JN; Yu G; Betenbaugh MJ
    Methods Mol Biol; 2018; 1850():237-257. PubMed ID: 30242691
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Targeting miRNAs with CRISPR/Cas9 to Improve Recombinant Protein Production of CHO Cells.
    Kellner K; Solanki A; Amann T; Lao N; Barron N
    Methods Mol Biol; 2018; 1850():221-235. PubMed ID: 30242690
    [TBL] [Abstract][Full Text] [Related]  

  • 27. CRISPR Technologies in Chinese Hamster Ovary Cell Line Engineering.
    Glinšek K; Bozovičar K; Bratkovič T
    Int J Mol Sci; 2023 May; 24(9):. PubMed ID: 37175850
    [TBL] [Abstract][Full Text] [Related]  

  • 28. lncRNA-MEG3 Suppresses the Proliferation and Invasion of Melanoma by Regulating CYLD Expression Mediated by Sponging miR-499-5p.
    Long J; Pi X
    Biomed Res Int; 2018; 2018():2086564. PubMed ID: 29808164
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Application of CRISPR/Cas9 Genome Editing to Improve Recombinant Protein Production in CHO Cells.
    Grav LM; la Cour Karottki KJ; Lee JS; Kildegaard HF
    Methods Mol Biol; 2017; 1603():101-118. PubMed ID: 28493126
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chinese hamster ovary (CHO) host cell engineering to increase sialylation of recombinant therapeutic proteins by modulating sialyltransferase expression.
    Lin N; Mascarenhas J; Sealover NR; George HJ; Brooks J; Kayser KJ; Gau B; Yasa I; Azadi P; Archer-Hartmann S
    Biotechnol Prog; 2015; 31(2):334-46. PubMed ID: 25641927
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rapid development of stable transgene CHO cell lines by CRISPR/Cas9-mediated site-specific integration into C12orf35.
    Zhao M; Wang J; Luo M; Luo H; Zhao M; Han L; Zhang M; Yang H; Xie Y; Jiang H; Feng L; Lu H; Zhu J
    Appl Microbiol Biotechnol; 2018 Jul; 102(14):6105-6117. PubMed ID: 29789882
    [TBL] [Abstract][Full Text] [Related]  

  • 32. CRISPR-Cas13d for Gene Knockdown and Engineering of CHO Cells.
    Shen CC; Lin MW; Nguyen BKT; Chang CW; Shih JR; Nguyen MTT; Chang YH; Hu YC
    ACS Synth Biol; 2020 Oct; 9(10):2808-2818. PubMed ID: 32911927
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Application of the CRISPR/Cas9 Gene Editing Method for Modulating Antibody Fucosylation in CHO Cells.
    Wang Q; Aliyu L; Chung CY; Rosenberg JN; Yu G; Betenbaugh MJ
    Methods Mol Biol; 2024; 2810():249-271. PubMed ID: 38926284
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A high-yielding CHO transient system: coexpression of genes encoding EBNA-1 and GS enhances transient protein expression.
    Daramola O; Stevenson J; Dean G; Hatton D; Pettman G; Holmes W; Field R
    Biotechnol Prog; 2014; 30(1):132-41. PubMed ID: 24106171
    [TBL] [Abstract][Full Text] [Related]  

  • 35. XGFR*, a novel affinity-matured bispecific antibody targeting IGF-1R and EGFR with combined signaling inhibition and enhanced immune activation for the treatment of pancreatic cancer.
    Schanzer JM; Wartha K; Moessner E; Hosse RJ; Moser S; Croasdale R; Trochanowska H; Shao C; Wang P; Shi L; Weinzierl T; Rieder N; Bacac M; Ries CH; Kettenberger H; Schlothauer T; Friess T; Umana P; Klein C
    MAbs; 2016; 8(4):811-27. PubMed ID: 26984378
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Production of bispecific antibodies in "knobs-into-holes" using a cell-free expression system.
    Xu Y; Lee J; Tran C; Heibeck TH; Wang WD; Yang J; Stafford RL; Steiner AR; Sato AK; Hallam TJ; Yin G
    MAbs; 2015; 7(1):231-42. PubMed ID: 25427258
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Heat shock protein 27 overexpression in CHO cells modulates apoptosis pathways and delays activation of caspases to improve recombinant monoclonal antibody titre in fed-batch bioreactors.
    Tan JG; Lee YY; Wang T; Yap MG; Tan TW; Ng SK
    Biotechnol J; 2015 May; 10(5):790-800. PubMed ID: 25740626
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The art of CHO cell engineering: A comprehensive retrospect and future perspectives.
    Fischer S; Handrick R; Otte K
    Biotechnol Adv; 2015 Dec; 33(8):1878-96. PubMed ID: 26523782
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Resilient immortals, characterizing and utilizing Bax/Bak deficient Chinese hamster ovary (CHO) cells for high titer antibody production.
    Misaghi S; Qu Y; Snowden A; Chang J; Snedecor B
    Biotechnol Prog; 2013; 29(3):727-37. PubMed ID: 23596153
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Wnt/β‑catenin signaling is a novel therapeutic target for tumor suppressor CYLD‑silenced glioblastoma cells.
    Kanemaru A; Ito Y; Yamaoka M; Shirakawa Y; Yonemaru K; Miyake S; Ando M; Ota M; Masuda T; Mukasa A; Li JD; Saito H; Hide T; Jono H
    Oncol Rep; 2023 Nov; 50(5):. PubMed ID: 37772388
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.