These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 29766280)

  • 41. [Label-Free Resonance Light Scattering Detection of Hg²⁺ Based on Specific Structure Thymine-Hg²⁺-Thymine].
    Yang SY; Xu XN; Yu JH; Yang HX; Hu CL
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Dec; 35(12):3471-4. PubMed ID: 26964232
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Design, synthesis and properties of artificial nucleic acids from (R)-4-amino-butane-1,3-diol.
    Li P; Sun J; Su M; Yang X; Tang X
    Org Biomol Chem; 2014 Apr; 12(14):2263-72. PubMed ID: 24569918
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Synthesis of alanyl nucleobase amino acids and their incorporation into proteins.
    Talukder P; Dedkova LM; Ellington AD; Yakovchuk P; Lim J; Anslyn EV; Hecht SM
    Bioorg Med Chem; 2016 Sep; 24(18):4177-4187. PubMed ID: 27452282
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Nanofibers formed through pi...pi stacking of the complexes of glucosyl-C2-salicyl-imine and phenylalanine: characterization by microscopy, modeling by molecular mechanics, and interaction by alpha-helical and beta-sheet proteins.
    Acharya A; Ramanujam B; Mitra A; Rao CP
    ACS Nano; 2010 Jul; 4(7):4061-73. PubMed ID: 20521836
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Thymine and guanine base specificity of human myeloma proteins with anti-DNA activity.
    Zouali M; Stollar BD
    J Clin Invest; 1986 Nov; 78(5):1173-8. PubMed ID: 3771789
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Nucleic acid structural engineering using pyrene-functionalized 2'-amino-alpha-L-LNA monomers and abasic sites.
    Kumar TS; Madsen AS; Østergaard ME; Wengel J; Hrdlicka PJ
    J Org Chem; 2008 Sep; 73(18):7060-6. PubMed ID: 18710289
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Reactivity of substituted charged phenyl radicals toward components of nucleic acids.
    Ramírez-Arizmendi LE; Heidbrink JL; Guler LP; Kenttämaa HI
    J Am Chem Soc; 2003 Feb; 125(8):2272-81. PubMed ID: 12590557
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Counting the number of magnesium ions bound to the surface-immobilized thymine oligonucleotides that comprise spherical nucleic acids.
    Walter SR; Young KL; Holland JG; Gieseck RL; Mirkin CA; Geiger FM
    J Am Chem Soc; 2013 Nov; 135(46):17339-48. PubMed ID: 24156735
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Highly stable triple helix formation by homopyrimidine (L)-acyclic threoninol nucleic acids with single stranded DNA and RNA.
    Kumar V; Kesavan V; Gothelf KV
    Org Biomol Chem; 2015 Feb; 13(8):2366-74. PubMed ID: 25564220
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Hydroxymethyluracil modifications enhance the flexibility and hydrophilicity of double-stranded DNA.
    Carson S; Wilson J; Aksimentiev A; Weigele PR; Wanunu M
    Nucleic Acids Res; 2016 Mar; 44(5):2085-92. PubMed ID: 26578595
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Synthesis of scpBNA-
    Horiba M; Yamaguchi T; Obika S
    J Org Chem; 2016 Nov; 81(22):11000-11008. PubMed ID: 27779877
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Physicochemical and biological characterization of targeted, nucleic acid-containing nanoparticles.
    Bartlett DW; Davis ME
    Bioconjug Chem; 2007; 18(2):456-68. PubMed ID: 17326672
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Structural basis for bifunctional zinc(II) macrocyclic complex recognition of thymine bulges in DNA.
    del Mundo IM; Siters KE; Fountain MA; Morrow JR
    Inorg Chem; 2012 May; 51(9):5444-57. PubMed ID: 22507054
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Association of star-shaped poly(D,L-lactide)s containing nucleobase multiple hydrogen bonding.
    Karikari AS; Mather BD; Long TE
    Biomacromolecules; 2007 Jan; 8(1):302-8. PubMed ID: 17206821
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Characterisation of the nucleic-acid-binding activity of KH domains. Different properties of different domains.
    Dejgaard K; Leffers H
    Eur J Biochem; 1996 Oct; 241(2):425-31. PubMed ID: 8917439
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Nucleic acid-binding properties of the RRM-containing protein RDM1.
    Hamimes S; Bourgeon D; Stasiak AZ; Stasiak A; Van Dyck E
    Biochem Biophys Res Commun; 2006 May; 344(1):87-94. PubMed ID: 16630539
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Nucleic acid complexing glycosyl nucleoside-based amphiphile.
    Arigon J; Prata CA; Grinstaff MW; Barthélémy P
    Bioconjug Chem; 2005; 16(4):864-72. PubMed ID: 16029028
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Thermodynamic characterization of the interaction between the human Y-box binding protein YB-1 and nucleic acids.
    Tanabe Y; Nagatoishi S; Tsumoto K
    Mol Biosyst; 2015 Sep; 11(9):2441-8. PubMed ID: 26126888
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Experimental and theoretical study of energetics of complex formation between nucleic acid bases and the bases with amide group.
    Poltev VI; Shulyupina NV; Bruskov VI; Teplitsky AB; Sukhodub LF; Galetich IK
    J Biomol Struct Dyn; 1991 Aug; 9(1):101-11. PubMed ID: 1781941
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Role of Tyr-22 in the binding of Pf3 ssDNA binding protein to nucleic acids.
    Powell MD; Gray DM
    Biochemistry; 1995 Apr; 34(16):5635-43. PubMed ID: 7727424
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.