BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 29766497)

  • 1. Hydraulic Conductivity Calibration of Logging NMR in a Granite Aquifer, Laramie Range, Wyoming.
    Ren S; Parsekian AD; Zhang Y; Carr BJ
    Ground Water; 2019 Mar; 57(2):303-319. PubMed ID: 29766497
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bootstrap calibration and uncertainty estimation of downhole NMR hydraulic conductivity estimates in an unconsolidated aquifer.
    Parsekian AD; Dlubac K; Grunewald E; Butler JJ; Knight R; Walsh DO
    Ground Water; 2015; 53(1):111-21. PubMed ID: 24520904
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydraulic Conductivity from Nuclear Magnetic Resonance Logs in Sediments with Elevated Magnetic Susceptibilities.
    Crow H; Paradis D; Grunewald E; Liang XX; Russell HAJ
    Ground Water; 2022 May; 60(3):377-392. PubMed ID: 34905215
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving estimates of groundwater velocity in a fractured rock borehole using hydraulic and tracer dilution methods.
    Maldaner CH; Quinn PM; Cherry JA; Parker BL
    J Contam Hydrol; 2018 Jul; 214():75-86. PubMed ID: 29907430
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of NMR Logging for Estimating Hydraulic Conductivity in Glacial Aquifers.
    Kendrick AK; Knight R; Johnson CD; Liu G; Knobbe S; Hunt RJ; Butler JJ
    Ground Water; 2021 Jan; 59(1):31-48. PubMed ID: 32390161
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Groundwater flow velocities in a fractured carbonate aquifer-type: Implications for contaminant transport.
    Medici G; West LJ; Banwart SA
    J Contam Hydrol; 2019 Apr; 222():1-16. PubMed ID: 30795856
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Borehole Nuclear Magnetic Resonance Estimation of Specific Yield in a Fractured Granite Aquifer.
    Phillips SN; Carr B; Zhang Y; Flinchum B; Ren S
    Ground Water; 2024; 62(4):578-590. PubMed ID: 37930240
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of Models for Estimating Hydraulic Conductivity in Glacial Aquifers with NMR Logging.
    Kendrick AK; Knight R; Johnson CD; Liu G; Hart DJ; Butler JJ; Hunt RJ
    Ground Water; 2023; 61(6):778-792. PubMed ID: 37057729
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NMR Logging to Estimate Hydraulic Conductivity in Unconsolidated Aquifers.
    Knight R; Walsh DO; Butler JJ; Grunewald E; Liu G; Parsekian AD; Reboulet EC; Knobbe S; Barrows M
    Ground Water; 2016 Jan; 54(1):104-14. PubMed ID: 25810149
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measurements of groundwater velocity in discrete rock fractures.
    Novakowski K; Bickerton G; Lapcevic P; Voralek J; Ross N
    J Contam Hydrol; 2006 Jan; 82(1-2):44-60. PubMed ID: 16239047
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Imaging Pathways in Fractured Rock Using Three-Dimensional Electrical Resistivity Tomography.
    Robinson J; Slater L; Johnson T; Shapiro A; Tiedeman C; Ntarlagiannis D; Johnson C; Day-Lewis F; Lacombe P; Imbrigiotta T; Lane J
    Ground Water; 2016 Mar; 54(2):186-201. PubMed ID: 26172032
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimates of Horizontal Groundwater Flow Velocities in Boreholes.
    Bayer-Raich M; Credoz A; Guimerà J; Jordana S; Sampietro D; Font-Capó J; Nief N; Grossemy M
    Ground Water; 2019 Jul; 57(4):525-533. PubMed ID: 30105834
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cross-borehole flowmeter tests for transient heads in heterogeneous aquifers.
    Le Borgne T; Paillet F; Bour O; Caudal JP
    Ground Water; 2006; 44(3):444-52. PubMed ID: 16681524
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Induced temperature gradients to examine groundwater flowpaths in open boreholes.
    Banks EW; Shanafield MA; Cook PG
    Ground Water; 2014; 52(6):943-51. PubMed ID: 24475970
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Borehole flowmeter logging for the accurate design and analysis of tracer tests.
    Basiricò S; Crosta GB; Frattini P; Villa A; Godio A
    Ground Water; 2015 Apr; 53 Suppl 1():3-9. PubMed ID: 25417730
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydraulic tomography offers improved imaging of heterogeneity in fractured rocks.
    Illman WA
    Ground Water; 2014; 52(5):659-84. PubMed ID: 24749939
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-resolution delineation of chlorinated volatile organic compounds in a dipping, fractured mudstone: Depth- and strata-dependent spatial variability from rock-core sampling.
    Goode DJ; Imbrigiotta TE; Lacombe PJ
    J Contam Hydrol; 2014 Dec; 171():1-11. PubMed ID: 25461882
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solute transport in crystalline rocks at Aspö--I: geological basis and model calibration.
    Mazurek M; Jakob A; Bossart P
    J Contam Hydrol; 2003 Mar; 61(1-4):157-74. PubMed ID: 12598102
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A New Rapid Method for Measuring the Vertical Head Profile.
    Keller C
    Ground Water; 2017 Mar; 55(2):244-254. PubMed ID: 27588952
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of pressure change during hydraulic tests on fracture aperture.
    Ji SH; Koh YK; Kuhlman KL; Lee MY; Choi JW
    Ground Water; 2013 Mar; 51(2):298-304. PubMed ID: 22823750
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.