These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 29766497)

  • 21. Groundwater flow velocities in karst aquifers; importance of spatial observation scale and hydraulic testing for contaminant transport prediction.
    Medici G; West LJ
    Environ Sci Pollut Res Int; 2021 Aug; 28(32):43050-43063. PubMed ID: 34125385
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Using constant head step tests to determine hydraulic apertures in fractured rock.
    Quinn PM; Parker BL; Cherry JA
    J Contam Hydrol; 2011 Sep; 126(1-2):85-99. PubMed ID: 21885152
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterizing flow pathways in a sandstone aquifer: Tectonic vs sedimentary heterogeneities.
    Medici G; West LJ; Mountney NP
    J Contam Hydrol; 2016 Nov; 194():36-58. PubMed ID: 27969550
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hydraulic Tomography: 3D Hydraulic Conductivity, Fracture Network, and Connectivity in Mudstone.
    Tiedeman CR; Barrash W
    Ground Water; 2020 Mar; 58(2):238-257. PubMed ID: 31187873
    [TBL] [Abstract][Full Text] [Related]  

  • 25. New method for continuous transmissivity profiling in fractured rock.
    Keller CE; Cherry JA; Parker BL
    Ground Water; 2014; 52(3):352-67. PubMed ID: 23692626
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A small-diameter NMR logging tool for groundwater investigations.
    Walsh D; Turner P; Grunewald E; Zhang H; Butler JJ; Reboulet E; Knobbe S; Christy T; Lane JW; Johnson CD; Munday T; Fitzpatrick A
    Ground Water; 2013; 51(6):914-26. PubMed ID: 23425428
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fractional flow in fractured chalk; a flow and tracer test revisited.
    Odling NE; West LJ; Hartmann S; Kilpatrick A
    J Contam Hydrol; 2013 Apr; 147():96-111. PubMed ID: 23501945
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Do Simple Analytical Models Capture Complex Fractured Bedrock Hydraulics? Oscillatory Flow Tests Suggest Not.
    Patterson JR; Cardiff M
    Ground Water; 2023; 61(6):816-833. PubMed ID: 36745008
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hydraulic head applications of flow logs in the study of heterogeneous aquifers.
    Paillet FL
    Ground Water; 2001; 39(5):667-75. PubMed ID: 11554244
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Transient Recharge Estimability Through Field-Scale Groundwater Model Calibration.
    Knowling MJ; Werner AD
    Ground Water; 2017 Nov; 55(6):827-840. PubMed ID: 28498485
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hydraulically controlled discrete sampling from open boreholes.
    Harte PT
    Ground Water; 2013; 51(6):822-7. PubMed ID: 24107011
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An Application of Hydraulic Tomography to a Large-Scale Fractured Granite Site, Mizunami, Japan.
    Zha Y; Yeh TJ; Illman WA; Tanaka T; Bruines P; Onoe H; Saegusa H; Mao D; Takeuchi S; Wen JC
    Ground Water; 2016 Nov; 54(6):793-804. PubMed ID: 27097271
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A New Randomized Binary Prior Model for Hydraulic Tomography in Fractured Aquifers.
    Poduri S; Kambhammettu B; Gorugantula S
    Ground Water; 2021 Jul; 59(4):537-548. PubMed ID: 33462817
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fracture Flow Characterization with Low-Noise Spontaneous Potential Logging.
    Kowalski ACG; Mendonça CA; Ofterdinger US
    Ground Water; 2021 Jan; 59(1):16-23. PubMed ID: 32306376
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Assessment of site conditions for disposal of low- and intermediate-level radioactive wastes: a case study in southern China.
    Yi S; Ma H; Zheng C; Zhu X; Wang H; Li X; Hu X; Qin J
    Sci Total Environ; 2012 Jan; 414():624-31. PubMed ID: 22119030
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Site characterization in densely fractured dolomite: comparison of methods.
    Muldoon M; Bradbury KR
    Ground Water; 2005; 43(6):863-76. PubMed ID: 16324008
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Understanding the Geometry of Connected Fracture Flow with Multiperiod Oscillatory Hydraulic Tests.
    Sayler C; Cardiff M; Fort MD
    Ground Water; 2018 Mar; 56(2):276-287. PubMed ID: 28810071
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Geophysical constraints on contaminant transport modeling in a heterogeneous fluvial aquifer.
    Bowling JC; Zheng C; Rodriguez AB; Harry DL
    J Contam Hydrol; 2006 May; 85(1-2):72-88. PubMed ID: 16574272
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Application of ERT, Saline Tracer and Numerical Studies to Delineate Preferential Paths in Fractured Granites.
    Sreeparvathy V; Kambhammettu BVNP; Peddinti SR; Sarada PSL
    Ground Water; 2019 Jan; 57(1):126-139. PubMed ID: 29569235
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An overview of geophysical technologies appropriate for characterization and monitoring at fractured-rock sites.
    Day-Lewis FD; Slater LD; Robinson J; Johnson CD; Terry N; Werkema D
    J Environ Manage; 2017 Dec; 204(Pt 2):709-720. PubMed ID: 28434821
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.