These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 29766612)

  • 21. Mirror reversal and visual rotation are learned and consolidated via separate mechanisms: recalibrating or learning de novo?
    Telgen S; Parvin D; Diedrichsen J
    J Neurosci; 2014 Oct; 34(41):13768-79. PubMed ID: 25297103
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Functional connectivity of cortical networks involved in bimanual motor sequence learning.
    Sun FT; Miller LM; Rao AA; D'Esposito M
    Cereb Cortex; 2007 May; 17(5):1227-34. PubMed ID: 16855008
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Advantages of melodic over rhythmic movement sonification in bimanual motor skill learning.
    Dyer JF; Stapleton P; Rodger MWM
    Exp Brain Res; 2017 Oct; 235(10):3129-3140. PubMed ID: 28748311
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Large-scale cortical networks estimated from scalp EEG signals during performance of goal-directed motor tasks.
    De Vico Fallani F; Astolfi L; Cincotti F; Mattia D; Maglione AG; Vecchiato G; Toppi J; Della Penna F; Salinari S; Babiloni F; Zouridakis G
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():1738-41. PubMed ID: 21096410
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Spinal reflexes provide motor error signals to cerebellar modules--relevance for motor coordination.
    Garwicz M
    Brain Res Brain Res Rev; 2002 Oct; 40(1-3):152-65. PubMed ID: 12589914
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Coherence and phase locking of intracerebral activation during visuo- and audio-motor learning of continuous tracking movements.
    Blum J; Lutz K; Jäncke L
    Exp Brain Res; 2007 Sep; 182(1):59-69. PubMed ID: 17486324
    [TBL] [Abstract][Full Text] [Related]  

  • 27. EEG microstates distinguish between cognitive components of fluid reasoning.
    Zappasodi F; Perrucci MG; Saggino A; Croce P; Mercuri P; Romanelli R; Colom R; Ebisch SJH
    Neuroimage; 2019 Apr; 189():560-573. PubMed ID: 30710677
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Resting-state fMRI detects the effects of learning in short term: A visual search training study.
    Bueichekú E; Miró-Padilla A; Ávila C
    Hum Brain Mapp; 2019 Jun; 40(9):2787-2799. PubMed ID: 30859709
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Motor learning-induced changes in functional brain connectivity as revealed by means of graph-theoretical network analysis.
    Heitger MH; Ronsse R; Dhollander T; Dupont P; Caeyenberghs K; Swinnen SP
    Neuroimage; 2012 Jul; 61(3):633-50. PubMed ID: 22503778
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reorganization and enhanced functional connectivity of motor areas in repetitive ankle movements after training in locomotor attention.
    Sacco K; Cauda F; D'Agata F; Mate D; Duca S; Geminiani G
    Brain Res; 2009 Nov; 1297():124-34. PubMed ID: 19703428
    [TBL] [Abstract][Full Text] [Related]  

  • 31. New visuomotor maps are immediately available to the opposite limb.
    Carroll TJ; Poh E; de Rugy A
    J Neurophysiol; 2014 Jun; 111(11):2232-43. PubMed ID: 24598522
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Adaptation and spatial generalization to a triaxial visuomotor perturbation in a virtual reality environment.
    Lefrançois C; Messier J
    Exp Brain Res; 2019 Mar; 237(3):793-803. PubMed ID: 30607472
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Brain mechanisms for preparing increasingly complex sensory to motor transformations.
    Gorbet DJ; Staines WR; Sergio LE
    Neuroimage; 2004 Nov; 23(3):1100-11. PubMed ID: 15528110
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Motor imagery learning induced changes in functional connectivity of the default mode network.
    Ge R; Zhang H; Yao L; Long Z
    IEEE Trans Neural Syst Rehabil Eng; 2015 Jan; 23(1):138-48. PubMed ID: 25014958
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Learning-induced autonomy of sensorimotor systems.
    Bassett DS; Yang M; Wymbs NF; Grafton ST
    Nat Neurosci; 2015 May; 18(5):744-51. PubMed ID: 25849989
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The role of the striatum in visuomotor integration during handwriting: an fMRI study.
    Bartoň M; Fňašková M; Rektorová I; Mikl M; Mareček R; Rapcsak SZ; Rektor I
    J Neural Transm (Vienna); 2020 Mar; 127(3):331-337. PubMed ID: 31901984
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dynamics of motor-related functional integration during motor sequence learning.
    Coynel D; Marrelec G; Perlbarg V; Pélégrini-Issac M; Van de Moortele PF; Ugurbil K; Doyon J; Benali H; Lehéricy S
    Neuroimage; 2010 Jan; 49(1):759-66. PubMed ID: 19716894
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The integration of cortical and behavioural dynamics during initial learning of a motor task.
    Serrien DJ; Brown P
    Eur J Neurosci; 2003 Mar; 17(5):1098-104. PubMed ID: 12653986
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Human theta oscillations related to sensorimotor integration and spatial learning.
    Caplan JB; Madsen JR; Schulze-Bonhage A; Aschenbrenner-Scheibe R; Newman EL; Kahana MJ
    J Neurosci; 2003 Jun; 23(11):4726-36. PubMed ID: 12805312
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Functionally specific changes in resting-state sensorimotor networks after motor learning.
    Vahdat S; Darainy M; Milner TE; Ostry DJ
    J Neurosci; 2011 Nov; 31(47):16907-15. PubMed ID: 22114261
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.