These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 29767461)

  • 1. Sex differences but no evidence of quantitative honesty in the warning signals of six-spot burnet moths (Zygaena filipendulae L.).
    Briolat ES; Zagrobelny M; Olsen CE; Blount JD; Stevens M
    Evolution; 2018 May; 72(7):1460-74. PubMed ID: 29767461
    [TBL] [Abstract][Full Text] [Related]  

  • 2. No evidence of quantitative signal honesty across species of aposematic burnet moths (Lepidoptera: Zygaenidae).
    Briolat ES; Zagrobelny M; Olsen CE; Blount JD; Stevens M
    J Evol Biol; 2019 Jan; 32(1):31-48. PubMed ID: 30317689
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The cyanogenic glucoside composition of Zygaena filipendulae (Lepidoptera: Zygaenidae) as effected by feeding on wild-type and transgenic lotus populations with variable cyanogenic glucoside profiles.
    Zagrobelny M; Bak S; Ekstrøm CT; Olsen CE; Møller BL
    Insect Biochem Mol Biol; 2007 Jan; 37(1):10-8. PubMed ID: 17175442
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 454 pyrosequencing based transcriptome analysis of Zygaena filipendulae with focus on genes involved in biosynthesis of cyanogenic glucosides.
    Zagrobelny M; Scheibye-Alsing K; Jensen NB; Møller BL; Gorodkin J; Bak S
    BMC Genomics; 2009 Dec; 10():574. PubMed ID: 19954531
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cyanogenic glucosides in the biological warfare between plants and insects: the Burnet moth-Birdsfoot trefoil model system.
    Zagrobelny M; Møller BL
    Phytochemistry; 2011 Sep; 72(13):1585-92. PubMed ID: 21429539
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptional regulation of de novo biosynthesis of cyanogenic glucosides throughout the life-cycle of the burnet moth Zygaena filipendulae (Lepidoptera).
    Fürstenberg-Hägg J; Zagrobelny M; Olsen CE; Jørgensen K; Møller BL; Bak S
    Insect Biochem Mol Biol; 2014 Jun; 49():80-9. PubMed ID: 24727026
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial separation of the cyanogenic β-glucosidase ZfBGD2 and cyanogenic glucosides in the haemolymph of
    Pentzold S; Jensen MK; Matthes A; Olsen CE; Petersen BL; Clausen H; Møller BL; Bak S; Zagrobelny M
    R Soc Open Sci; 2017 Jun; 4(6):170262. PubMed ID: 28680679
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sequestration, tissue distribution and developmental transmission of cyanogenic glucosides in a specialist insect herbivore.
    Zagrobelny M; Olsen CE; Pentzold S; Fürstenberg-Hägg J; Jørgensen K; Bak S; Møller BL; Motawia MS
    Insect Biochem Mol Biol; 2014 Jan; 44():44-53. PubMed ID: 24269868
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intimate roles for cyanogenic glucosides in the life cycle of Zygaena filipendulae (Lepidoptera, Zygaenidae).
    Zagrobelny M; Bak S; Olsen CE; Møller BL
    Insect Biochem Mol Biol; 2007 Nov; 37(11):1189-97. PubMed ID: 17916505
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Convergent evolution in biosynthesis of cyanogenic defence compounds in plants and insects.
    Jensen NB; Zagrobelny M; Hjernø K; Olsen CE; Houghton-Larsen J; Borch J; Møller BL; Bak S
    Nat Commun; 2011; 2():273. PubMed ID: 21505429
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical defense balanced by sequestration and de novo biosynthesis in a lepidopteran specialist.
    Fürstenberg-Hägg J; Zagrobelny M; Jørgensen K; Vogel H; Møller BL; Bak S
    PLoS One; 2014; 9(10):e108745. PubMed ID: 25299618
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cyanogenesis in plants and arthropods.
    Zagrobelny M; Bak S; Møller BL
    Phytochemistry; 2008 May; 69(7):1457-68. PubMed ID: 18353406
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Male-to-female transfer of 5-hydroxytryptophan glucoside during mating in Zygaena filipendulae (Lepidoptera).
    Zagrobelny M; Motawia MS; Olsen CE; Bak S; Møller BL
    Insect Biochem Mol Biol; 2013 Nov; 43(11):1037-44. PubMed ID: 24012995
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Warning coloration can be disruptive: aposematic marginal wing patterning in the wood tiger moth.
    Honma A; Mappes J; Valkonen JK
    Ecol Evol; 2015 Nov; 5(21):4863-74. PubMed ID: 26640666
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Additive genetic variation, but not temperature, influences warning signal expression in
    Binns GE; Hämäläinen L; Kemp DJ; Rowland HM; Umbers KDL; Herberstein ME
    Ecol Evol; 2022 Jul; 12(7):e9111. PubMed ID: 35866015
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Honest signaling and the uses of prey coloration.
    Lee TJ; Speed MP; Stephens PA
    Am Nat; 2011 Jul; 178(1):E1-9. PubMed ID: 21670571
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Appearance before performance? Nutritional constraints on life-history traits, but not warning signal expression in aposematic moths.
    Lindstedt C; Suisto K; Mappes J
    J Anim Ecol; 2020 Feb; 89(2):494-505. PubMed ID: 31538333
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Meta-analytic evidence for quantitative honesty in aposematic signals.
    White TE; Umbers KDL
    Proc Biol Sci; 2021 Apr; 288(1949):20210679. PubMed ID: 33906408
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cyanogenesis in Arthropods: From Chemical Warfare to Nuptial Gifts.
    Zagrobelny M; de Castro ÉCP; Møller BL; Bak S
    Insects; 2018 May; 9(2):. PubMed ID: 29751568
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolutionary and ecological processes influencing chemical defense variation in an aposematic and mimetic
    Mattila ALK; Jiggins CD; Opedal ØH; Montejo-Kovacevich G; Pinheiro de Castro ÉC; McMillan WO; Bacquet C; Saastamoinen M
    PeerJ; 2021; 9():e11523. PubMed ID: 34178447
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.